如图5,设点p是正方形abcd内的一点,点p到顶点abcd的距离分别是1,2,3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 10:46:30
如图5,设点p是正方形abcd内的一点,点p到顶点abcd的距离分别是1,2,3
如图,四棱锥P-ABCD的底面ABCD是正方形,侧棱PA⊥底面ABCD,PA=AD,E.F分别是棱PD.BC中点

四棱锥P-ABCD的底面ABCD是正方形,侧棱PA⊥底面ABCD,∴CD⊥AD,侧面PAD⊥底面ABCD,∴CD⊥平面PAD,∴平面PCD⊥平面PAD,PA=AD,E为PD的中点,∴AE⊥PD,∴AE

如图,在四棱柱P—ABCD,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,

在正方形ABCD中,连接AC、BD,相交与点G,连接EG∵点E是PC的中点,点G是AC的中点∴EG∥PA∵EG为平面EDB上的线∴PA//平面EDB∵侧棱PD⊥底面ABCD∴PD⊥CD,PD⊥BC∵P

如图,在四棱柱P-ABCD中,底面ABCD是正方形侧棱PD⊥底面ABCD,PD=DC,E是PC中点

因为pd垂直abcd,所以bc垂直pcd,所以bc垂直de因为e为pc中点且pd等于dc,所以de垂直pc所以de垂直pbc所以bde垂直pbc请采纳答案,支持我一下.

如图 在四棱锥P-ABCD中 底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=PC

证明(1)连接AC交BD于O,连接OE∵ABCD是正方形∴OC=OA∵E是PC中点∴EC=EP∴OE||PA∵OE在面EDB内∴PA//平面EDB(2)∵ABCD是正方形∴BC⊥CD∵PD⊥底面ABC

如图,在长方形ABCD中,AB=4cm,BC=5cm.点P从A点开始以1厘米每秒的速度向点D运动,设点P运动的时间为t

问题补充:点P从A开始沿AB向B移动,速度是点Q速度的a倍,如果点P,Q分别(3)设DQ的中点为N,则DN=1/2DQ=1/2(6-t)过点D作高DE,那么AE=

如图,在长方形ABCD中,AB=4cm,BC=5cm.点P从A点开始以1厘米每秒的速度向点D运动,设点P运动的时间为t,

∵SΔBCP=1/2S矩形ABCD是不变的,随t的变化而变化的三角形有:ΔABP、ΔACP与ΔCDP,现假设部分是ΔAPC.⑴S=1/2AP*AB=2t,(0≤t≤5),⑵当ΔBCP为等腰三角形时:①

如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,

这题是做对称点以AC为轴做点D的对称点F易证  点F与点B重合所以  DP = BP所以  DP + 

如图,正方形ABCD的面积为12,三角形ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE

使P点是BE与AC的交点则可,这时PE+PD[(最小值)]=BE=AB=√(12)=2√(3),证明:连接BD,则AC是BD的垂直平分线,∴PD=PB,∴PD+PE=PB+PE=BE,在AC上任取异于

如图,正方形ABCD的边长为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P

这题是做对称点以AC为轴做点D的对称点F易证  点F与点B重合所以  DP = BP所以  DP + 

如图,正方形ABCD的面积为10,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,

∵ABCD是正方形∴AC⊥BD AB=AD=A=BC=CD=√10∵△ABE是等边三角形∴AB=BE=AE=√10要使PD+PE的和最小以AC为对称轴,做D的对称点,由于BD⊥AC所以D的对

如图,正方形ABCD的边长为4,△ABE是等边三角形,点E在正方形ABCD中,在对角线AC上存有一点P

不清楚追问,清楚了希采纳再问:看不懂求过程再答:∵ABCD是正方形∴AC垂直平分BD∴当点P在AC上时,都有BP=DP∵当点B,P,E不在同一直线时,BP+PE>BE,当B,P,E在同一直线时,BP+

如图,已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD

(1)∵四边形ABCD是正方形,E,F分别为BC,AD的中点∴DF=BE,DF∥BE∴四边形BEDF是平行四边形∴DE∥BF∴异面直线PB和DE所成的角为∠PBF∵BC⊥CD,PD⊥BC,PD与CD相

已知正方形ABCD的边长为10,一动点P从A点出发沿正方形的边运动,路线是A→B→C→D→A.设点P经过的路程为x,设|

画出图形来就一目了然了!P在A到B之间时,PA=X所以Y=X^2B到CY=|AB|^2+|BP|^2=100+(X-10)^2C到DY=|AD|^2+|PD|^2=100+(|AB|+|BC|+|CD

如图,在平行四边形ABCD中,∠DAB=60°,AB=5,BC=3,点P从点D出发,沿DC、CB向终点B匀速运动.设点P

首先,P点匀速运动,则面积y和x肯定是一元线性关系的,于是D排除了,在ABC里选.这时问题貌似变成了“P点在DC上与在CB上,面积y的变化率”的问题.有点复杂?但其实不然.ABC三个选项明显暗示了一点

如图,四棱锥P-ABCD中,底面ABCD是正方形,O是正方形ABCD的中心,PO⊥底面ABCD,E是PC的中点.求证:

证明:(Ⅰ)连接OE.∵O是AC的中点,E是PC的中点,∴OE∥AP,又∵OE⊂平面BDE,PA⊄平面BDE,∴PA∥平面BDE.      

如图,P是正方形ABCD对角线BD上一点

连接PC,∵PE⊥DC,PF⊥BC,ABCD是正方形,∴∠PEC=∠PFC=∠ECF=90°,∴四边形PECF为矩形,∴PC=EF,又∵P为BD上任意一点,∴PA、PC关于BD对称,可以得出,PA=P

如图,点p在正方形abcd内,△bpc是正三角形,若△bpd的面积是根号3-1,求正方形abcd的边长

设正方形的边长为n,P到BC的高为(根3)n/2角PCD=30度,D到AP的距离为n/2三角形PBC的面积:S1=n*[(根3)n/2]*(1/2)=(根3)n^2/4三角形PCD的面积:S2=2*(