如图1正方形abcd中点e,f在对角线bd上且be等于ef等于fd
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 18:56:52
过E作EG⊥AC于G,∵E是AD中点,则AG=AC/4,连FG∴FG²=5/8∵⊿ADC⊥⊿ABC∴EG⊥FG∵正方形ABCD的边长为1,则AC=√2在RT⊿EFG中EG=√2/4∴EF
四边形EFGH是一个正方形因为点E、F、G、H分别是正方形ABCD各边的中点所以三角形AEF,BHE,HCG,FDG为全等的等腰直角三角形所以EF=EH=HG=FG,角BHE+角CHG=90度所以菱形
因为:点E、F分别是AB和BC的中点,正方形ABCD的边长是5厘米所以:BE=CF=2.5cm又因为:BC=CD=5,角B=角DCF=90°所以三角形EBC全等三角形FCD所以角CEB=角DFC又因为
证明:将AE与DF的交点设为O∵正方形ABCD∴∠ADC=∠C=90,AD=CD=BC∴∠DAE+∠AED=90∵E是CD的中点、F是BC的中点∴DE=CD/2,CF=BC/2∴DE=CF∴△ADE≌
∵E、F是BC、CD的中点,∴SΔBCF=SΔCDE=1/4,连接OC,则SΔOCE=SΔOBE=SΔOCE=SΔOBE=1/3*1/4=1/12,∴S四边形ABOD=1-4×1/12=2/3.
延长AF交BC的延长线于H,设AF、BE交于G由正方形和中点的条件得:EF/CF=DE/BC=1/2所以AE/CH=EF/CF=1/2所以CH=BC所以AE=BH/2所以EG/GB=AE/BH=1/4
你能求出中间正方形IMJK的面积吗?问题补充:要过程,详细一点,谢谢了先求AF再求AI最后求FJ答案略
(1)证明:在平面AD1B中,E为AD1的中点,F为BD1的中点所以ED为△AD1B的中位线所以ED‖AB又因为AB在平面ABCD上所以EF‖平面ABCD(2)D1D比AD为√2比1取AA1中点G连结
∵ABCD是正方形∴AD=AB=CD=BC∠D=∠B=90°∵E.F分别为BC,CD的中点.∴BE=1/2BC=1/2ABDF=1/2CD=1/2AB∴BE=DF在Rt△ABE和Rt△ADF中AB=A
设AB=4.则BE=√20,EF=√5,BF=5.BE²+EF²=BF²∴∠BEF=90º.BE⊥EF.无量寿佛,佛说苦海无涯回头是岸!施主,我看你骨骼清奇,器
1连接BD交AC于点O,则可知,O是BD的中点.所以EO是三角形BDD1的一条中位线.所以有,EO//BD1因为EO∈平面EAC,DB在平面EAC外,所以,BD1//面EAC2连接B1O,由于B1C=
设AF与BE相交于M,DA=DC,∠ADF=∠CDF=45°,FD=FD==>△DAF≌△DCF==>∠DAF=∠DCFAE=ED,∠BAE=∠CDE=90°,AB=DC==>△ABE≌△DCE==>
答:四边形EFGH是一个正方形因为点E、F、G、H分别是正方形ABCD各边的中点所以三角形AEF,BHE,HCG,FDG为全等的等腰直角三角形所以EF=EH=HG=FG,角BHE+角CHG=90度所以
设BE、AF交于O在△AFD和△BFD中,DF=DF,AD=CD(正方形),∠ADF=∠CDF(正方形对角线平分角),∴△AFD和△BFD全等,则∠DAF=∠DCF在△AEB和△DEC中,AE=DE(
设正方形边长为a,三角形EBC面积=三角形FDC面积=1/2*a*a/2=a²/4三角形AEF面积=1/2*a/2*a/2=a²/8三角形EFC面积=正方形面积-三角形EBC面积-
连接BA1,A1NBA1//EM,A1C1//EC所以面BA1NF//EMC因为面BFN属于面BA1NF所以平面CEN//平面BFN
实际考察O到EF的距离关系:EF与圆O相切延长EF,CD交于H过C作CG⊥EF于G,连接CE,过E作EI⊥CD于I∵ABCD是正方形∴∠A=90°EI=AD=6∴勾股定理EF=5∴AF/FD=EF/F
“正方形def的面积等于1”应该是“三角形def的面积等于1”吧?设正方形边长是2X则根据题意,AE=BE=BF=CF=XAD=CD=2X所以S△DEF=S正方形ABCD-S△ADE-S△CDF-S△
稍等再答:证明:将AE与DF的交点设为O∵正方形ABCD∴AD=CD=BC,∠ADC=∠C=90∴∠DAE+∠AED=90∵E是DC的中点,F是BC的中点∴DE=CD/2,F=BC/2∴DE=CF∴△
因为E是AB中点,则DE肯定是固定不变的,∠EDC也是固定不变的.如果结论是正确的,则∠GCD肯定也是固定不变的.那么,G点也是固定不变的.同理的,AF也是固定不变的,F应该是一个特殊的点.但是,在题