如图1有一张矩形纸片ac=8

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 19:27:57
如图1有一张矩形纸片ac=8
如图,把一张矩形纸片沿对角线折叠,连接AE,求证:AE‖BD

过A,E两点分别作BD 的垂线,交BD与G,H两点.因为△ABD≌△EDB(SAS,矩形两对边相等,再有一直角,可证.),所以△AGB≌△EHD(HL),所以AG=EH,所以AGHE为矩形(

(2014•大港区二模)如图1,在平面直角坐标系中,有一张矩形纸片OABC,已知O(0,0),A(8,0),C(0,4)

(Ⅰ)如图1,过点D作x轴的垂线,垂足为点Q,根据题意,在RT△PAB中,∠PAB=90°,∠BPA=30°,AB=4,PB=8,AP=43,在RT△PBD中,由题意∠PDB=90°,∠DPA=2∠B

如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5.在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片

(1)∵四边形ABCD是矩形,∴AM∥DN.∴∠KNM=∠1.∵∠1=70°,∴∠KNM=∠KMN=∠1=70°,∴∠MKN=40°.(2)不能.过M点作ME⊥DN,垂足为E,则ME=AD=1.∵∠K

三年级下学期数学题小华将一张矩形纸片(如图1)沿对角线AC剪开,得到两张三角形纸片(如图2),其中∠ACB=a,然后将这

小华将一张矩形纸片(如图1)沿对角线AC剪开,得到两张三角形纸片(如图2),其中∠ACB=a,然后将这两张三角形纸片按如图3所示的位置摆放,△EDF纸片的直角顶点D落在△ACB纸片的斜边AC上,直角边

小华将一张矩形纸片(如图1)沿对角线CA剪开,得到两张三角形纸片(如图2),其中∠ACB=α,然后将这两张三角形纸片按如

(1)MB=MD,证明:∵AG的中点为M∴在Rt△ABG中,MB=12AG在Rt△ADG中,MD=12AG∴MB=MD.(2)∵∠BMG=∠BAM+∠ABM=2∠BAM,同理∠DMG=∠DAM+∠AD

有一张矩形纸片ABCD,按下面步骤进行折叠:第一步:如图①,将矩形纸片 折叠,使点B、D重合,点C落在点

(1)由题意知,C′D与CD是对应线段,而AB=CD,故有AD=C′D;(2)由题意知点G是矩形的中心,即延长DG过B点,延长MN也过点B,由于五边形DMNPQ,恰好是一个正五边形,且由折叠的过程知:

如图,有一张直角三角形纸片,两直角边AC=6cm,BC=8cm,

由题意得AB=10(勾股定理),CD=DE,AE=AC=6(折叠),设CD=CE=X,则BD=8-X,BE=10-6=4∵△BDE是直角三角形,∴(8-x)²=x²+4²

一道数学题:有一张矩形纸片ABCD,如图,折叠∠A有一张矩使∠A落在点A‘的位置,折痕为EF,再折叠

90度.折叠是轴对称变换,∠AEF=∠A‘EF,∠DEG=∠A’EG,这4角的和是平角等于180度,∠GEF=∠FEA‘+∠GEA’=180/2=90度

如图,有一张矩形纸片ABCD,AB=6cm,BC=8cm,将纸片沿EF折叠,使点B与D点重合,求折痕EF的长度.

连接BE、DF因为折叠后,两部分重叠∴BE=ED=DF=FB四边形BEDF是菱形设BE=ED=x则AE=8-x在Rt△ABE中,用勾股定理有:x^2=(8-x)^2+6^2解出x=6.25设BD与EF

如图,把一张矩形纸片沿对角线AC折叠,使点D落在点D~处,AD~交BE与E,AD=8cm,AB=4cm.求三角形ACE的

首先角DAC=角D~AC=角BCA,三角形ACE为等腰三角形,tan角DAC=4/8=1/2=tan角D~AC为底边,AD=根号下(4的平方加8的平方,即,2倍的根号10,从而高为1/2根号10,从而

如图1,在平面直角坐标系中,有一张矩形纸片OABC,已知O(0,0),A(4,0),C(0,3),

(1)这个可以利用两个翻折过去后,PE和PB就分别为∠OPD和∠FPA的角平分线,于是根据这两个脚相加得180,可得∠EPB为180/2=90°,这样就得:EP²+PB²=EB&#

如图1,在平面直角坐标系中,有一张矩形纸片OABC,已知O(0,0),A(3,0),C(0,2),点P是OA

(1)证明:由翻折可知:△OPE≌△FPE,△ABP≌△DBP,∴∠OPE=∠FPE,∠APB=∠DPB,又∠OPE+∠FPE+∠APB+∠DPB=180°,∴∠EPB=∠EPF+∠DPB=∠OPE+

如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8cm,BC=6cm.沿斜边AB的中线CD把这张纸片剪成△AC

(1)∵∠ACB=90°,AC=8cm,BC=6cm,∴在直角三角形ABC中,由勾股定理,得AB=10.∵D是AB的中点,∴CD=12AB=5.∵12AC•BC=12AB•CH,∴12×6×8=12×

如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6,沿斜边AB的中线CD把这张纸片剪成△AC 1 D

(1)因为所以又因为CD是斜边上的中线所以即所以所以所以同理又因为所以所以。(2)∵在Rt△ABC中,AC=8,BC=6,∴由勾股定理,得AB=10即又因为所以所以在中,到的距离就是的边上的高,为设的

如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6.沿斜边AB的中线CD把这张纸片剪成△AC 1 D

(1)D1E=D2F.∵C1D1∥C2D2,∴∠C1=∠AFD2.又∵∠ACB=90°,CD是斜边上的中线,∴DC=DA=DB,即C1D1=C2D2=BD2=AD1∴∠C1=∠A,∴∠AFD2=∠A∴

如图,有一张三角形纸片,两条直角边BC=6,AC=8,将三角形ABC折叠,使AC落在斜边AB上,折痕

AB=√(AC^2+BC^2)=10㎝,由折叠知:AE=AC=6㎝,CD=DE,∠BED=90°,∴BE=10-6=4㎝,在RTΔBDE中,设CD=DE=X,则BD=8-X,∴(8-X)^2=X^2+

(2011?威海)如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5

如图,自己看吧 点击图片查看大图

如图,有一张三角形的纸片,用折纸的方法比较AB与AC的长短

AB与AC边重合起来折就可以比较ABAC的长短了长的比较长短的比较短,可以知道AB比较长再问:我用尺子量的AC比较长你的方法是对的谢了再答:打错了是AC比较长不好意思呵呵

如图,有一张直角三角形的纸片两直角边AC=6 cm,BC=8 cm,现将直角边AC沿直线AD折叠,

用勾股定理算出AB=10㎝S△ABC=1/2*6*8=24㎝=S△ABD+S△ACD=1/2*10*DE=1/2*6*CD=24因为DE=CD8CD=24CD=3