如图1三角形abc中ag垂直bc于点g
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 14:02:56
你的结论是不是EF=AD=AE?证明:∵BD平分∠ABC∴∠ABD=∠FBD又∵AF⊥BD于H∴可根据三线合一推出BA=BF∴HA=HF同理,AE=EF∵∠AED=∠BAE+∠ABE,∠ADE=∠CB
延长AG交BC于M,延长AF交BC于N,则由题设可知BG⊥AM,CF⊥AN,又∵BG平分∠ABC,CF平分∠ACB,∴△ABM和△ACN是等腰三角形,∴AC=CN=7,AB=BM=9∴MN=BM+CN
∵AB=AC∴∠B=∠C∵FE⊥BC∴∠DEC=∠DEB=90°∴∠F+∠C=∠B+∠BDE=90°∵∠BDE=∠ADF∴∠F+∠C=∠B+∠ADF∵∠B=∠C∴∠F=∠ADF∴AF=AD100%正确
亲这道题我刚看见现在给你答案不知道是不是有些晚:我给你说思路具体证明我就不写了哪不懂可以追问1:先证三角形ADE相似三角形ABC,所以三角形AEG相似三角形ACF,且三角形AGD相似三角形AFB,因为
第一个问题:延长CG交AB于H.∵BC⊥AC、DE⊥AC,∴BC∥DE,∴EG/DG=CF/BF,而EG=DG,∴CF=BF,又CF=FG,∴CF=FG=BF,∴点F是△BCG的外接圆圆心,∴BC是△
是角B,角C的平分线吧证明:延长AH交BC于I用角角边证明⊿AHC≌⊿IHC∴AH=HI同法延长AG交BC于J∴AG=GJ∴GH‖BC2题IJ=IC+BJ-BC=AB+AC-BC=9+14-18=5∴
分析若延长AG,设延长线交BC于M.由角平分线的对称性可以证明△ABG≌△MBG,从而G是AM的中点;同样,延长AH交BC于N,H是AN的中点,从而GH就是△AMN的中位线,所以GH‖BC,进而,利用
(1)证明:如图,在BD上取点M,使DM=CD,∵DM=CD,且AD⊥BC,∴AD为CM的垂直平分线,∴AM=AC,∴∠C=∠AMC,∴∠C=2∠B,∴∠AMC=2∠B,∵∠AMC=∠B+∠BAM,∴
证明:(1)∵BF⊥AC,CE⊥AB∴∠AEC=∠AFB=90°∵∠A=∠A∴△ABF∽△ACE∴AF/AE=AB/AC∴AF/AB=AE/AC∵∠A=∠A∴△AEF∽△ACB(2)∵∠A=60°∴A
如图,延长AM到F,使AM=FM,并反向延长交EG于D,连结BF那么△BMF≌△CMA(SAS),BF=AC=AG,∠FBM=∠ACM,进而BF∥AC又∠BAE=∠CAG=90
据题意知,∠EAB=90度,∠PAE+∠BAG=90度,∠PAE+∠PEA=90度,所以∠BAG=∠PEA∠PAE=∠ABG,又EA=BA,故△BAG≌△AEP,得PE=AG,同理QF=AG,所以PE
先看第一题:由题意可知△ABG∽△MAG∽△MBA所以GM:AM=AM:BMAM的平方=GM×BM因为BM=3GM所以AM的平方=3(GM的平方)同样AB:BG=BM:AB又因BG=2GM,BM=3G
延长AG交BC于点D因为BG=2GM所以D是BC中点所以BC=2ADAG=2GD所以AD=1.5AG所以BC=3AGAG^2=GM*GB=GB*GB/2=GB^2/22AG^2=GB^23AG^2=G
等于由题可知:∠BAD+∠CAD+∠EAG+∠ABG=90°因为2(∠ABG+∠BAD+∠ACF)=180°所以∠BAD+∠CAD+∠EAG+∠ABG=∠BAD+∠ACF+∠ABG即∠CAD+∠EAG
这题很简单先证三角形ADF和三角形EDB相似,这个不难然后得出AD/FD=ED/DB即ED*FD=AD*DB在证三角形ACD相似于三角形CBD,这个也不难、然后得CD/AD=DB/CD即CD平方=AD
解题思路:梯形解题过程:在△ABC中,D,E,F是三角形ABC各边的中点,AG垂直于BC.垂足为G.求证:四边形DEFG是等腰梯形证明:∵AG⊥BC,F为AC的中点∴FG=1/2AC(直角三角形中斜边
重心是三条中线的交点延长CG交AB于E,因为G是三角形ABC的重心,所以CE为斜边AB上的中线,所以CE=AE=BE所以角BAC=角ACE因为角ACB=角AGC=90度所以三角形CGA相似于三角形AB
延长AF,与CB的延长线交于H.延长AG,与BC的延长线交于K.∵BD平分∠ABC,∴△ABF≌△HBF.AF=FH.AB=HG.∵CE平分∠ACK,∴△ACG≌△KCG.AG=GK.AC=KC.∴F
三角形ABM中,BF垂直AM,BF平分角ABM,三角形ABM等到腰,AB=BM,F是AB中点,同理,在三角形ACN中AC=CN,G是AN中点,GF是三角形ANM中位线,GF=1/2(MN)=1/2(B
延长AF,AG与直线BC相交于M、N,1.三角形ABM中,BF垂直AM,BF平分角ABM,三角形ABM等到腰,AB=BM,F是AB中点,同理,在三角形ACN中AC=CN,G是AN中点,GF是三角形AN