如图18-1-50,E为四边形ABCD中CD
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 03:45:27
假设AFE为1份,则EFD是1份EBC是2份,FDC是4份,整个ABCD是1+1+4+2=8份所以DEFC=(1+4)/8*1=5/8平方单位
相似,因为OE//BC,OF//BC再问:怎么证出来的(还有对角线相等的两个矩形必相似吗再答:一共四个边,两个边重合,两个边平行,必相似对角线相等是什么意思,是长度相等?再问:是的对角线相等的两个矩形
四边形EFGH是平行四边形证明:因为AB、BC、CD、AD的中点分别是E、F、G、H,所以EF、GH分别是是三角形ABC和ADC的中位线根据中位线性质得:EF//AC,EF=AC/2,GH//AC,G
因为M,N,E,F分别为AD,BC,BD,AC的中点所以ME=0.5AB=FN,MF=0.5CD=EN因为AB=CD所以ME=FN=EN=MF所以四边形MENF为菱形
C.1/6设AC交BE于O,取BC中点F,过E、F分别作△CDA、△ABC的中位线易证OE=BE/3∴S△CEO=S△BCE/3又S△BCE=S□ABCD/4=1/4∴S△CEO=1/6
设DA=a﹙向量﹚,DC=b设FN=tFBCN=sCAFN=t﹙b/2+a﹚=ta+﹙t/2﹚bFN=FC+CN=b/2+s﹙a-b﹚=sa+﹙1/2-s﹚b∴t=st/2=1/2-s解得t=s=1/
(1)连ABCD的任一条对角线,如BD,由中位线可得EFGH一组对边平行且相等,所以EFGH为平行四边形(2)由第一问可知,EFGH为平行四边形,所以当AC、BD相等时,EFGH为菱形当AC、BD互相
证明:∵E、F、G、H分别为四边中点∴EF‖AC,EF=1/2AC,GH‖AC,GH=1/2AC∴EF‖GH,EF=GH∴四边形EFGH是平行四边形∵AC⊥BD∴EF⊥EH(∵EH‖BD,EF‖AC)
四边形ABCD为矩形,且AD=2,AB=1,PA⊥平面ABCD,E为BC上的动点(1)当E为BC的中点时,AE²=ED²=2,PE²=PA²+AE²=
将BD连接形成三角形ABD和三角形CBD,分别以B、D点向AD、BC作垂线,很明显,因为E、F分别为AD、BC的中点,所以三角形BED:三角形ABD=1:2;同理,三角形BFD:三角形CBD=1:2.
∵EF∥AC,∴AEBE=CFBF,同理,CFBF=CGDG,CGDG=AHDH,∴AEBE=AHDH,∴EH∥BD.∵EF∥AC,∴EFAC=BEAB=BFBC,同理,GFBD=CFBC,∴EFAC
∠EBC=15°很高兴为您解答,祝你学习进步!有不明白的可以追问!如果您认可我的回答,请选为满意答案,谢谢!
解题思路:本题考察了切线的判定方法,及已知特殊线段的长度,得到三角形ODC是等边三角形,再结合扇形面积公式,等边三角形面积公式,求得阴影部分面积。解题过程:
这题确实有点难.(1)较容易,就是两角相等证相似(一直径所对直角一等弧所对圆周角).(2)就稍难些了.在△BCD中用勾股定理求出BD的长,再证△ABE相似于△DBC,得AB:BD=BE:BC,再比例变
证明:因为AE⊥EF所以∠AEF=90度又因为BC为线段所以∠BEC=∠BEA+∠AEF+∠2=∠BEA+∠2+90度=180度所以∠BEA+∠2=90度即∠BEA与∠2互余又因为三角形ABE为直角三
结论:AB=AF+CF.证明:分别延长AE、DF交于点G.∵E为BC的中点,∴BE=CE,∵AB‖CD,∴∠BAE=∠G,在△ABE与△GCE中,∴△ABE≌△GCE,∴AB=GC,又∵∠BAE=∠E
联结对角线,根据三角形中位线定理,只要保证对角线互相垂直就可以
连接BD,因为E是AD中点,所以S△AEB=S△BDE因为F是BC中点,所以S△DFC=S△BDF所以S△AEB+S△DFC=S△BDE+S△BDF=S四边形BEDF=6所以S四边形ABCD=S△AE
很简单啊,过D作高DH,由60度可知Sin∠DAB,高就有了.结果是根号3.