如图16,抛物线y=ax²+bx+2分之5

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 09:15:16
如图16,抛物线y=ax²+bx+2分之5
如图,一直点A(-4,8)和点B(2,n)在抛物线y=ax^2上

将A(-4,8)代入y=ax^2:8=16a则a=1/2抛物线解析式为:y=x^2/2则B点座标为:B(2,2)点B关于x轴对称点P的坐标:P(2,-2)Q点的确定:连接AP,直线AP与X轴的交点即是

如图抛物线Y=ax^2-2ax-3a交x轴于A,B,交y轴于D点,点C的横坐标为2.求抛物线的对称轴及A,B两点的坐标

(1)对称轴是x=1.A.B两点的坐标是:(-1,0);(3,0).(2)如果点C不是在抛物线上,那就算不出抛物线的解析式.如果点C在抛物线上,则其坐标是:C(2,-3a)D(0,-3a).所以AD=

如图,已知抛物线y=ax 2-5ax+4a(a>0)与x轴交于A、B两点,与y轴交于C点.

ax^2-5ax+4a=0x^2-5x+4=0x=1x=4所以A(1,0),B(4,0)C(0,4a)

如图1,抛物线y=ax^2-3ax+b经过A(-1,0),C(3,-2)

(1)y=1/2x^2-3/2x-2(2)k=-3/2(3)看不清楚呀

如图1,已知抛物线 y=ax^2 的顶点为P,A、B是抛物线上两点,AB‖x轴,△PAB是等边三角形.

(2)②先求出顶点(2,-10),然后设(2-a,-10+√3a)代入解析式解方程即可(3)设抛物线Y=a(X-m)²+n当a<0时又∵C(m-b,n-√3b)代入自己解得一个答案当a>0时

如图抛物线,y=ax^2+bx+2交x轴于A(-1,0),B(4,0)两点.

抛物线x轴于A(-1,0),B(4,0)两点,可以表达为y=a(x+1)(x-4)=ax²-3ax-4a-4a=2a=-1/2y=-(x+1)(x-4)/2其余题目不清楚,没法做再问:再答:

如图,已知抛物线y=ax^2+bx+c(b>0,c

因为抛物线的顶点在x轴上,所以b^2-4ac=0,所以ac=b^2/4,代入b+ac=3,解得b=2(b=-6不合题意舍去);  因为ac=1,c

如图,已知抛物线y=ax²+bx+c经过A(4,0),B(2,3),C(0,3)三点.求抛物线的解析式

1、抛物线的解析式为y=-3/8x²+3/4x+3对称轴为x=12、A点关于x=1的对称点为D(-2,0),直线BD的方程为3x-4y+6=0,它交直线x=1于M(1,9/4),此点为所求

如图,抛物线y=ax^2+8ax+12a与x轴交于A,B两点(点A在点B的左侧)

y=a(x^2+8x+12)=a(x+2))(x+6)图像与x轴相交说明y=0即a(x+2))(x+6)=0所以x=-2或x=-6A的坐标应该为(-2,0)B的坐标应该为(-6,0)交点应该在x轴负半

如图,抛物线y=-ax²+3ax+2.

答:抛物线方程y=-ax^2+3ax+2=-a(x-3/2)^2+2+9a/4所以抛物线对称轴x=3/2,故点C一定在对称轴的右侧.令x=0,y=2,所以点A(0,2)令y=-ax^2+3ax+2=0

如图.抛物线Y=ax^2-2ax+b经过A(-1,0),C(2,)两点,与x轴交于另一点B.

1)y=a(x-1)^2+b-a0=3a+b3/2=ba=-1/2y=-1/2*(x-1)^2+22)M(1,2)B(3,0)作图得知角MPQ=角MBP=π/4角PMQ=角BMP三角形MPQ相似三角形

如图,抛物线y=ax²+bx+c经过A(-1,哦),B(3,0),C(0,3)三点,对称轴与抛物线相交

1.将A,B,C三点,分别代入抛物线方程,得:0=a-b+c0=9a+3b+c3=c所以得出:a=-1,b=2,c=3∴抛物线解析式为y=-x²+2x+32.存在,Q有3个坐标设Q到直线MB

如图,抛物线y=-x平方+ax+b与x轴交与a(-二分之一,0),b(2,0),而且与y轴交与c,

①将A(-1/2,0)B(2,0)代入y=-x²+ax+b中得{-1/4-1/2a+b=0-4+2a+b=0}联立解得a=3/2,b=1∴y=-x²+3/2x+1.令x=0得y=1

如图,抛物线y=ax²+bx-4a经过A(-1,0)

解题思路:分析抛物线过两点,由待定系数求出抛物线解析式;根据D、E中点坐标在直线BC上,求出D点关于直线BC对称点的坐标;有两种方法:法一作辅助线PF⊥AB于F,DE⊥BC于E,根据几何关系,先求出t

如图,抛物线y=ax²+c(a

(△ABG+△BCD+四边形OABC)面积对称与四边形ODEF面积所以说△ABG+△BCD面积=10-6=4

如图,已知抛物线y=ax 2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在B点左侧

(1)∵B(1,0),∴B=1;∵OC=3BO,∴C(0,-3);∵y=ax2+3ax+c过B(1,0)、C(0,-3),∴c=-3 a+3a+c=0 ;解这个方程组,得