如图16,C为圆上一点,圆O的直径AB为10cm,∠ABC的平分线交圆O于点D
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 07:08:02
设DA=X,DC=6-DA=6-X,连接EC,AE是直径,所以∠ACE=90°=∠CDA,∠CAE=∠CAD,所以⊿ACE∽⊿ADC,[AA]AE:AC=AC:ADAC²=AE*ADAD
的延长线上取一点E,连接EB,使∠OEB=∠ABC.(1)求证:BE是⊙O的切线(1)证明:∵AB是半圆O的直径,∴∠ACB=90°,∵ODAC,∴∠EDB=90°
(1)∵AB为圆O的直径,∴AC⊥CB,∵Rt△ABC中,由3AC=BC,∴tan∠ABC=ACBC=33,∠ABC=30°,∵AB=4,3AD=DB,∴DB=3,BC=23,由余弦定理,得△BCD中
24.证:连结AF则∠ABD=∠F∠ADG=∠ABD∴∠ADG=∠F,∵DF为⊙O的直径∴∠DAF=90°∴∠ADF+∠F=90°∴∠ADG+∠ADF=∠FDG=90°∴∠DAF=∠CDE=90°∵C
题目条件应该打错,是BE=CE(1)证明:AB是直径,∴∠ACB=90°∠A+∠ABC=90°∵CD⊥AB,∴∠BCD+∠ABC=90°∴∠A=∠BCD又∵∠A和∠E所对都是BC弧,∠A=∠E∴∠BC
1.连接BC,∵CD是切线∴OC垂直DC∴AD平行于OC∴△DAF∽△OCF∴AF/FC=AD/OC连接BE交OC于G∵AB是直径∴∠AEB=90°,∵AB是直径∴BE平行于DC∴OG垂直BE∴OG=
如果你是初中,你可以这样做说说思路你自己做很明显三角形ABD,CDO,ABE都是直角三角形AD:BD=2/3可证明三角形ADC与三角形CBD相似AD:BD=CD:BC得CD=4设圆的半径为R,则OC=
连结OC,∵OA,OB,OC都是圆的半径,∴△OAC和△OCB为等腰三角形;等腰△两底角相等,故有∠OAC=∠OCA,∠OBC=∠OCB;又∵三角形内角和为180°,∴∠ACB=∠OCA+∠OCB=9
①过C作半圆的切线,∠COB=90度;∠DAC=∠CAB,OA=OC,∠OCA=∠CAB∠COB=∠CAO+∠OCA=∠CAB+∠CAB=∠CAB+∠DAC=∠DAB,OC‖AD,∠ADC=90度;A
(1)证明:∵AB是⊙O的直径∴∠ACB=90°∵OP//BC∴∠POA=∠CBA∵∠P=∠BAC∴∠PAO=∠ACB=90°∴PA是⊙O的切线(2)∵∠P=∠BAC,∠PAB=∠ACB∴△PAO∽△
当C不与A,B两点重合时,AP
1、连接BC,∠DCA=∠CBA,从而证明三角形DAC相似于三角形CAB,于是∠ADC=∠ACB=直角2、AD:AC=AC:AB,所以ACxAC=80,AC的长度就是把80开方就行了
(2009•路北区三模)如图:AB为⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠DCB=∠A.(1)求证:CD是⊙O的切线;(2)如果:∠D=30°,BD=10,求:⊙O的半径.&
连接OC因为OCOAOB为半径AB=10所以OC=OA=OB=5根据三角形相似可知AD/AC=AC/AB把数带进去可求得AC=2根下5因为三角形ABC为直角三角形AB=10AC=2根下5所以BC=4根
连接CO,根据一条弧所对的圆周角等于它所对的圆心角的一半,所以∠COB=2∠CAB由AC平分∠DAB,所以∠COB=∠DAB即CO∥AD∠ADC=∠OCB=90°经过圆心且垂直于切线的直线必经过切点所
解题思路:直角三角形、圆的切线定理、三角形全等知识点解题过程:连接OC、OE∵AB为直径∴∠ACB=90∵DC为切线∴∠DCO=90∴∠DAC=∠OCB∵OC=OB,∠B=60∴等边三角形OCB,∠O
因为AD垂直CD所以角ADC=90度即角DAC+角DCA=90度1式连接OC因为OA=OC所以角CAO=角ACO2式因为AC平分角BAD所以角DAC=角CAB3式由1式2式3式可得角DCA+角ACB=