如图15①,p是正方形abcd的对角线ac上的一点,点e在bc上

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:48:49
如图15①,p是正方形abcd的对角线ac上的一点,点e在bc上
如图,四棱锥P-ABCD的底面ABCD是正方形,侧棱PA⊥底面ABCD,PA=AD,E.F分别是棱PD.BC中点

四棱锥P-ABCD的底面ABCD是正方形,侧棱PA⊥底面ABCD,∴CD⊥AD,侧面PAD⊥底面ABCD,∴CD⊥平面PAD,∴平面PCD⊥平面PAD,PA=AD,E为PD的中点,∴AE⊥PD,∴AE

如图,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD,

解析:∵在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD过P作PG⊥AD∴PG⊥底面ABCD∵PA=PD=(根号2/2)AD,E,F分别为PC,BD的中点∴PA=PD=

如图,在四棱柱P—ABCD,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,

在正方形ABCD中,连接AC、BD,相交与点G,连接EG∵点E是PC的中点,点G是AC的中点∴EG∥PA∵EG为平面EDB上的线∴PA//平面EDB∵侧棱PD⊥底面ABCD∴PD⊥CD,PD⊥BC∵P

如图,在四棱柱P-ABCD中,底面ABCD是正方形侧棱PD⊥底面ABCD,PD=DC,E是PC中点

因为pd垂直abcd,所以bc垂直pcd,所以bc垂直de因为e为pc中点且pd等于dc,所以de垂直pc所以de垂直pbc所以bde垂直pbc请采纳答案,支持我一下.

如图 在四棱锥P-ABCD中 底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=PC

证明(1)连接AC交BD于O,连接OE∵ABCD是正方形∴OC=OA∵E是PC中点∴EC=EP∴OE||PA∵OE在面EDB内∴PA//平面EDB(2)∵ABCD是正方形∴BC⊥CD∵PD⊥底面ABC

如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,E是PC的中点.

(1)证明:连结AC、AC交BD于O,连结EO, ∵底面ABCD是正方形,∴点O是AC的中点,在△PAC中,EO是中位线, ∴PA∥EO,而平面EDB且平面EDB,所以,PA∥平面

如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,

这题是做对称点以AC为轴做点D的对称点F易证  点F与点B重合所以  DP = BP所以  DP + 

如图:已知四棱锥P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中点,求证(1)PC

(1)证明:连BD,AC交于O.∵ABCD是正方形∴AO=OCOC=AC/2取PC中点M.连EM.则EM是三角形PAC的中位线.EM∥AC且EM=AC/2∴EM∥OC且EM=OC连EO.则EOCM是平

如图,在四棱锥p -ABCD中底面 ABCD是正方形,侧面PAD 是正三角形,平面PAD垂直底面ABCD,求平面PAB垂

证明,过P做PM垂直AD于M,因为平面PAD垂直底面ABCD且AD为交线,所以PM垂直平面ABCD,即PM垂直AB.又ABCD是正方形,AB垂直AD,所以AB同时垂直平面PAD内相交的两条直线PM和A

如图,正方形ABCD的面积为12,三角形ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE

使P点是BE与AC的交点则可,这时PE+PD[(最小值)]=BE=AB=√(12)=2√(3),证明:连接BD,则AC是BD的垂直平分线,∴PD=PB,∴PD+PE=PB+PE=BE,在AC上任取异于

如图,正方形ABCD的边长为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P

这题是做对称点以AC为轴做点D的对称点F易证  点F与点B重合所以  DP = BP所以  DP + 

如图,正方形ABCD的面积为10,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,

∵ABCD是正方形∴AC⊥BD AB=AD=A=BC=CD=√10∵△ABE是等边三角形∴AB=BE=AE=√10要使PD+PE的和最小以AC为对称轴,做D的对称点,由于BD⊥AC所以D的对

如图,正方形ABCD的边长为4,△ABE是等边三角形,点E在正方形ABCD中,在对角线AC上存有一点P

不清楚追问,清楚了希采纳再问:看不懂求过程再答:∵ABCD是正方形∴AC垂直平分BD∴当点P在AC上时,都有BP=DP∵当点B,P,E不在同一直线时,BP+PE>BE,当B,P,E在同一直线时,BP+

如图,已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD

(1)∵四边形ABCD是正方形,E,F分别为BC,AD的中点∴DF=BE,DF∥BE∴四边形BEDF是平行四边形∴DE∥BF∴异面直线PB和DE所成的角为∠PBF∵BC⊥CD,PD⊥BC,PD与CD相

如图,四棱锥P-ABCD中,底面ABCD是正方形,O是正方形ABCD的中心,PO⊥底面ABCD,E是PC的中点.求证:

证明:(Ⅰ)连接OE.∵O是AC的中点,E是PC的中点,∴OE∥AP,又∵OE⊂平面BDE,PA⊄平面BDE,∴PA∥平面BDE.      

如图,P是正方形ABCD对角线BD上一点

连接PC,∵PE⊥DC,PF⊥BC,ABCD是正方形,∴∠PEC=∠PFC=∠ECF=90°,∴四边形PECF为矩形,∴PC=EF,又∵P为BD上任意一点,∴PA、PC关于BD对称,可以得出,PA=P

如图,点p在正方形abcd内,△bpc是正三角形,若△bpd的面积是根号3-1,求正方形abcd的边长

设正方形的边长为n,P到BC的高为(根3)n/2角PCD=30度,D到AP的距离为n/2三角形PBC的面积:S1=n*[(根3)n/2]*(1/2)=(根3)n^2/4三角形PCD的面积:S2=2*(