如图1,抛物线y=ax²-4ax 3a(a>0)与x轴交于A,B两点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 23:49:57
数理答疑团为您解答,希望对你有所帮助.如图在平面直角坐标系中,已知抛物线y=ax^2+bx-4经过A(-2,0)、B(4,0)交y轴于点C.(1)求抛物线的解析式抛物线y=ax^2+bx-4经过A(-
将A(-4,8)代入y=ax^2:8=16a则a=1/2抛物线解析式为:y=x^2/2则B点座标为:B(2,2)点B关于x轴对称点P的坐标:P(2,-2)Q点的确定:连接AP,直线AP与X轴的交点即是
(1)将A、C坐标代入抛物线y=ax²-2ax+c得:0=9a-6a+c4=c解得:a=4/3,c=4所以抛物线解析式为y=4x²/3-8x/3+4(2)
解1):把x=4,y=5代入y=ax²-5ax+4a得:4=25a-25a+4a4a=4a=1所以抛物线的解析式是y=x²-5x+4,化成顶点式:y=x²-5x+4y=x
(1)y=1/2x^2-3/2x-2(2)k=-3/2(3)看不清楚呀
(2)②先求出顶点(2,-10),然后设(2-a,-10+√3a)代入解析式解方程即可(3)设抛物线Y=a(X-m)²+n当a<0时又∵C(m-b,n-√3b)代入自己解得一个答案当a>0时
抛物线x轴于A(-1,0),B(4,0)两点,可以表达为y=a(x+1)(x-4)=ax²-3ax-4a-4a=2a=-1/2y=-(x+1)(x-4)/2其余题目不清楚,没法做再问:再答:
1代入AC点坐标可得a=﹣1b=3∴y=﹣x+3x+42令y=0得B(4,0)BC::y=4-xD在抛物线上,且m>0所以D(3,4)∴对称点(0,1)3根据夹角公式知BP直线斜率为﹣3/5所以BP:
1、抛物线的解析式为y=-3/8x²+3/4x+3对称轴为x=12、A点关于x=1的对称点为D(-2,0),直线BD的方程为3x-4y+6=0,它交直线x=1于M(1,9/4),此点为所求
答:抛物线方程y=-ax^2+3ax+2=-a(x-3/2)^2+2+9a/4所以抛物线对称轴x=3/2,故点C一定在对称轴的右侧.令x=0,y=2,所以点A(0,2)令y=-ax^2+3ax+2=0
写大概思路行吗?4题都要写?再问:第四题再答:ED的长度为Y,可是DE怎么表示?不妨看成ED=EN-DN,ON一段是X也是E点的横坐标。先看EN是在一元二次函数上的一点,那我可以带进函数里,当ON为X
1.将A,B,C三点,分别代入抛物线方程,得:0=a-b+c0=9a+3b+c3=c所以得出:a=-1,b=2,c=3∴抛物线解析式为y=-x²+2x+32.存在,Q有3个坐标设Q到直线MB
设,A(x1,y1)p是A,B中点,B(0,1)x1+xB=2xp.y1+yB=2yp.得x1=2,y1=5,由B点坐标代入y=ax^2+n(a
y=ax²-4ax+4a-2=a(x²-4x+4)-2=a(x-2)²-2所以顶点坐标为(2,-2)
解题思路:分析抛物线过两点,由待定系数求出抛物线解析式;根据D、E中点坐标在直线BC上,求出D点关于直线BC对称点的坐标;有两种方法:法一作辅助线PF⊥AB于F,DE⊥BC于E,根据几何关系,先求出t
(1)令y=0,得-x2+x+4=0,即x2-2x-8=0;解得x=-2,x=4;所以A(4,0);令x=0,得y=4,所以B(0,4);设直线AB的解析式为y=kx+b,则有:4k+b=0,b=4解
(△ABG+△BCD+四边形OABC)面积对称与四边形ODEF面积所以说△ABG+△BCD面积=10-6=4