如图1,已知:点A(-1,1)绕原点O顺时针旋转90°后刚好落在反比例函数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 18:58:40
op');如图,在直角坐标系中,已知点A(-1,0)、B(0,2).问题描述:如图,在直角坐标系中,已知点A(-1,0)、B(0,2).如图,在直角坐标系中,已知点A(-1,0)、B(0,2),动点P
1.因为当x=0时,y=6x=8时,y=0所以可得方程组:b=68k+b=0解之得,k=-3/4b=6所以y=-3/4x+62因为三角形APQ与三角形AOB相似所以要分两种情况讨论(1)当三角形APQ
(1) B(12,0)直线AB: (2) 设P(a. ), △ PMN的边长= =-t+8 &n
(1)设直线AB的解析式为y=kx+b由题意,得解得所以,直线AB的解析式为y=-x+6.(2)由AO=6,BO=8得AB=10所以AP=t,AQ=10-2t1)当∠APQ=∠AOB时,△APQ∽△A
(1+4)*(2+1)-2*1/2-1*4/2=4.5再问:�ܽ���һ����再答:�������ϵ�ֱ��A��B��AC,BD��ֱ��X��ֱ���C,D�����Ϊ����ABDC��ȥ��
\x0d\x0d百度里打字不大方便,做成了图片给你,请查看:
[解](1)设直线AB的解析式为y=kx+b由题意,得①b=6②8k+b=0解得k=-3/4,b=6所以,直线AB的解析式为y=-3/4x+6.(2)由AO=6,BO=8得AB=10所以AP=t,AQ
(1)S△AOB=S矩形EOFP;(1分)y与x的函数关系是;(2分)(2)当时,,∴点P的坐标为.(3分)可得四边形EOFP为正方形,过点O作OH⊥AB于H,∵在Rt△AOB中,OA=OB=1,∴,
(1)(0,-3),b=-,c=-3.(2)由(1),得y=x2-x-3,它与x轴交于A,B两点,得B(4,0).∴OB=4,又∵OC=3,∴BC=5.由题意,得△BHP∽△BOC,∵OC∶OB∶BC
:(1)用Ax表示A点横坐标,Ay表示A点纵坐标,B点类似,则有:AB?=(Ay-By)?+(Ax-Bx)?=(6-1)?+(m-n)?而OA⊥OB,则AB?=OA?+OB?=(m?+6?)+(n?+
http://czsx.cooco.net.cn/testdetail/20990/
C点坐标为(0,-2),设抛物线方程为y=a(x+1)(x-2)代入C点坐标为-2=-2a得a=1所以抛物线方程为y=(x+1)(x-2)=x²-x-2设P点坐标为(t,t²-t-
问题写的太乱,不太明白题目是什么……抛物线方程“四分之三”前是一个复号,和给出的图不一样了.直线“y=-4t分之三”是什么?第三问若角CBA不等于60度,需要分类讨论,QB=PB情况,QB=QP情况还
(1)因为反比例函数(双曲线)y1=k1/x与正比例函数y2=k2x都关于原点成中心对称,A的坐标为(4,2),所以B点的坐标为B(-4,-2);接下来的问题你没打上来,如果是:当x满足:X<-4或0
不用图2了我会做.分析:数与形相结和,理解正比例函数与反比例函数的性质,并对函数的性质灵活运用,同时也训练了平形四边形和矩行的相关性质.点A与点B关于原点对称,所以B点坐标为(-4,-2),在第三象限
①当两圆外切,设⊙B半径为R,AB=R+r,r=1,AO=3,OB=2-R,AB²=OA²+OB²(R+1)²=3²+(2-R)²6R=12
(1)证明:连接OD,∵BC是⊙O的切线,∴OD⊥BC,∵AC⊥BC,∴OD∥AC,∴∠2=∠3;∵OA=OD,∴∠1=∠3,∴∠1=∠2,∴AD平分∠BAC;(2)∵BC与圆相切于点D.∴BD2=B
(2,0)或者(-2,0)再问:详细点谢谢再答:aO间距离设为LP点坐标(1,4)那么三角形aOP的高为4三角形面积4=1/2*(L*4)L=2所以....
三角形的面积公式是S=½ab,P的纵坐标是4,已知面积为4,那就变成2×多少=4,由此可得A的坐标为(2,0)A也为(-1,0)脑子里应该要有概念,可是现在想这道题好累啊.我初一,这道题不难
(1)设直线AB的解析式为y=kx+b由题意,得解得所以,直线AB的解析式为y=-x+6.(2)由AO=6,BO=8得AB=10所以AP=t,AQ=10-2t1)当∠APQ=∠AOB时,△APQ∽△A