如图,锐角△ABC中,作高线BD.CE,过点B.C分别作DE的垂线,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 22:36:08
如图,锐角△ABC中,作高线BD.CE,过点B.C分别作DE的垂线,
如图,已知△ABC是等腰直角三角形,直角顶点C在x轴上,一锐角顶点B在y轴上

等腰直角三角形C为直角顶点则CA=CBCA=2*2+4*4=20所以CB=20CB=2*2+y*y解得y=4B(0,4)

如图,△ABC是等腰直角三角形,BC=AC,直角顶点C在x轴上,一锐角顶点B在y轴上.

(2)BD=2AE.证明:延长AE和BC交于点M.∵∠ABE=∠MBE;BE=BE;∠AEB=∠MEB=90°.∴⊿ABE≌⊿MBE(ASA),AE=ME,AM=2AE;又∠MAC=∠DBC(均为∠M

如图,锐角△ABC中,∠B=60°,AD⊥BC,CE⊥AB,D、E分别为垂足,连接DE 求证:AC=2DE

证明:∵∠B=60°,AD⊥BC,∴在RT△ABD中,∠BAD=30°,∴BD/BA=1/2.同理可得,BE/BC=1/2.又∵∠EBD=∠CBA,∴△DBE相似于△ABC,∴DE/AC=1/2.因此

△ABC中,A,B均为锐角,余弦A>正弦B,判断三角形形状

钝角三角形.cosA大于sinB,则cosB大于sinA,(因为二者都是锐角).所以cosAcosB大于sinAsinB,移向,cosAcosB减去sinAsinB大于0,化简得,cos(A加B)大于

在△ABC中,∠A、∠B都是锐角,且sinA=12

∵在△ABC中,∠A、∠B都是锐角,sinA=12,tanB=3,∴∠A=30°,∠B=60°,∠C=90°,∵sinA=ac=12tanB=ba=3AB=10,∴a=12c=5,b=3a=53,∴S

如图,在锐角△ABC中,AB=42,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则B

如图,在AC上截取AE=AN,连接BE.∵∠BAC的平分线交BC于点D,∴∠EAM=∠NAM,在△AME与△AMN中,AE=AN∠EAM=∠NAMAM=AM,∴△AME≌△AMN(SAS),∴ME=M

七年级数学(几何)如图,在锐角△ABC中,CD、BE分别为AB、AC上的高,且CD、BE交于一点P,若∠A=50°则∠B

B..因为角A=50.CD垂直AB所以角ACD=40又因为三角形PEC中角ACD=40.角CEP=90.所以角EPC=50..角DPE=130..角DPE与角BPC为对顶角.所以BBBBBBBBBBB

已知,如图:在锐角△ABC中,AD,BE分别是△ABC的两条高,F为BC中点.试说明DG+GF=FC

(应该加上“AD=BC”和“AD、BE交于G”的条件结论才成立)证明:因为AD、BE是高所以AD⊥BC,BE⊥AC所以∠CAD+∠C=∠CBE+∠C=90°所以∠CAD=∠CBE因为∠ADC=∠BDG

已知,如图,在△ABC中,AB=c,AC=b,锐角∠A=α(1)BC的长(2)三角形ABC的面积

解三角形常用到余弦定理和正弦定理,可以利用已知的边和角求出未知的边和角,其中余弦定理可以表示成BC^2=AB^2+AC^2-2AB*AC*cosA,正弦定理表示成a/sinA=b/sinB=c/sin

如图,AD,A'D'分别是锐角△ABC和△A'B'C'中BC,B'C'边上的高,且AB=A'B',AD=A'D',若使△

BC=B'C'然后根据边角边原则即可证明△ABC≌△A'B'C'

在锐角△ABC中,若C=2B,则cb

因为锐角△ABC中,若C=2B所以A=180°-3B∴0°<2B<90°0°<B<90°0°<180°-3B<90°∴30°<B<45°由正弦定理可得,cb=sinCsinB=2cosB∵22<cos

如图,已知锐角△ABC中,AB,AC边的中垂线交于点O,

中垂线交于点O,所以AO=BO=CO,∠OAB=∠OBA,∠OCA=∠OAC;所以∠AOB+∠AOC=(180°-∠OAB-∠OBA)+(180°-∠OAC-∠OCA)=(180°-2∠OAB)+((

已知:如图锐角△ABC中,∠A=60°,两条高BE、CD相交于点O,且BE=CD.

CD,BE为高,所以CD与AB垂直,BE与AC垂直,角A为公用角,△ACD与△ABE对称,所以AB=AC,△ABC是等边三角形.连接AO,则AOB与△AOC中∠ABO=∠ACO,AB=AC,AO为公用

已知:在△ABC中,∠B为锐角,sinB=45

过点A作AD⊥BC于D.在△ADB中,∠ADB=90°,∵sinB=45,AB=15,∴AD=AB•sinB=15×45=12.由勾股定理,可得BD=AB2−AD2=152−122=9.在△ADC中,

证明题 三角函数在△ABC中,∠A,∠B为锐角,∠C不是锐角,求证:当tanA*tanB取最小值时,△ABC为直角三角形

如果∠C是直角,则tanA*tanB=1;否则A+B也是锐角,tanA*tanB=1-(tanA+tanB)/tan(A+B)

如图,锐角△ABC中,BC=6

做AD垂直BC于D,与MN相交于点FAF:AD=MN:BC因为S△ABC=12,BC=6,MN=x所以AD=4所以AF:4=x:6,AF=2/3x阴影部分面积y=MN·DF=x·(4-2/3x)整理得

如图,锐角△ABC中,角B=2角C,BE是角ABC的平分线,AD垂直BE,垂足为D,求证AC=2BD.

延长AD交BC与F,过D做AC平行线交BC于G,易知:AD=DF=>DG为AFC中位线,DG=0.5AC且角DBC=0.5角B=角C=角DGB=>BD=DG=>AC=2BD

如图,在锐角△abc中,ab=4根号2,△abc的面积等于8根号2,∠bac的平分线交bc于d

你可能是忙中出错了!题目中的AB=4√2,应该是AC=4√2. 否则条件不足.若是这样,则方法如下:过B作BE⊥AC交AC于E,则:AD与BE的交点就是点M,再过M作AB的垂线,垂足就是点N.下面证明

如图,已知A是锐角MON内一点,试分别在OM、ON上确定点B、C,使△ABC的周长最小,并说明理由.

作A关于OM,ON的对称点A1,A2连接A1A2,与OM,ON的交点就是B,C!AB+BC+AC=A1B+BC+A2C两点之间线段最短,可知A1,B,C,A2共线时,周长最小!