如图,过矩形abcd的顶点c引对角线bd的垂线,e为垂足

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 11:04:47
如图,过矩形abcd的顶点c引对角线bd的垂线,e为垂足
如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4).以A为顶点的抛物线

(1)A(1,4)由题意知,可设抛物线解析式为y=a(x-1)2+4∵抛物线过点C(3,0),∴0=a(3-1)2+4,解得,a=-1,∴抛物线的解析式为y=-(x-1)2+4,即y=-x2+2x+3

如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A

显然A(4,8)过A:8=16a+4b,4a+b=2(1)过C:0=64a+8b,8a+b=0(2)由(1)(2):a=-1/2,b=4y=-x²/2+4xAC的方程:(y-0)/(x-8)

如图,abcd为矩形的四个顶点…

设运动ts后PQ距离为10,所以AP=3t,CQ=2t,即DQ=16-2t.所以QE为16-5t有知AD=PE=6.所以三角形PEQ中用勾股定理可解得t值

如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、 D(8,8).抛物线y=ax2+bx过

(1)易得A点为(4,8)由于抛物线过(4,8)(8,0),分别代入抛物线得a=-1/2,b=4所以抛物线为y=-1/2x+4x(2)由题知AE函数为y=-2x+16,P点坐标为(4,8-t)而AE纵

如图,在矩形ABCD中,对角线AC,BD相交于点O,过顶点C作BD的平行线CE交AD的延长线于点E,△ACE是等腰三角形

△ACE是等腰三角形.根据矩形性质,AC=BD,四边形EDBC是平行四边形,BD=CE,CE=AC,△ACE是等腰三角形.

如图二次函数y=-mx2+4m图象的顶点坐标为(0,2),矩形ABCD的顶点B,C在x轴上,A,D在抛物线上,矩形ABC

(1)∵二次函数y=-mx2+4m的顶点坐标为(0,2),∴4m=2,即m=12,∴抛物线的解析式为:y=-12x2+2;(2)∵A点在x轴的负方向上坐标为(x,y),四边形ABCD为矩形,BC在x轴

如图,矩形ABCD的顶点A坐标为(0,0),顶点B的坐标是(-2,1),顶点C在y轴上.

1.矩形对角线AC所分的两个三角形面积相等AC是两个三角形的底,所以BD两点横坐标绝对值相等所以D点横坐标是2过B点做X轴垂线交于M过D点做Y轴垂线交于N因为三角形OBMCDN全等所以BM=CN=1因

如图,二次函数y=-mx^2+4m的顶点坐标为(0,2),矩形ABCD的顶点B,C在x轴上.

1.(4ac-b²)/4a=2即:-16m²/-4m=2m=1/2所以二次函数的解析式为y=(-1/2)x²+2.2.因为A是抛物线上的点,所以其坐标可表示为[x,(-1

如图,一块矩形草坪ABCD的四个顶点处各有一棵树.现要扩大草坪的面积,方案是过点A、C分别作BD的平行线...

四边形是平行四边形,其两个边长与矩形的中心线AC、BD相等,而AC=BD,四边形为菱形.四边形被AC或BD分成2个相等的部分,A、B、C、D是四边形各边的中点,原来的三角形DAB或BCD,面积占一半,

如图,一块矩形草坪ABCD的四个顶点处各有一颗树,现要扩大草坪的面积,方案是过点A C 作BD的平行线

新的图形是菱形,理由是:EFGH首先是平行四边形,则两组对边相等,又因为两邻边都为矩形对角线,则两邻边相等,所以有四边都相等,因此是菱形.面积是原来的2倍,理由是:如图,连接AC、BD,新面积可看作四

如图,矩形ABCD的顶点A坐标为(0,0),顶点B的坐标是(-2,1),顶点C在y轴上.

(2)将矩形ABCD饶点O顺时针旋转,使点D落在X轴的点G处,得到矩形AEFG,EF与AD交于点H,过点H的反比例函数图像交FG于点I,求这个反比例函数的解析式

如图,过矩形ABCD的顶点C作CE⊥BD于E,延长EC至H,使CH=BD,连接AH交BC于点F求∠BAF的度数

联接AC交BD于O,作AG⊥BD于G.∵CE⊥BD∴AG∥EH∴∠GAH=∠H∵ABCD是矩形∴AC=BD     AO=1/2 AC&nb

如图,过矩形ABCD的顶点C作CE⊥BD垂足为E,延长EC交∠BAD的角平分线AF于F,求证AF=CF

结论有误,应该是AC=CF证明:连接AC,AF,作FG平行BC和AD,角AB延长线与G则角CFG=角ACB,角AFG=角FAD因为AF平分∠BAD所以∠FAD=∠FAB所以∠FAB=∠AFG,即∠FA

如图,过矩形ABCD的顶点C引对角线BD的垂线,M为垂足,角BAD的平分线与MC的延长线交E,与BD交与点N,连接AC

解;因为CM垂直于BD所以∠E=90—∠MNE因为∠NAD+∠ADN=∠MNE因为矩形ABCD所以∠BAD=90因为AN平分∠BAD所以∠NAD=45所以∠CAE=45-∠DAC,∠MNE=45+∠A

如图,反比例函数y=8/x的图像过矩形ABCD的顶点B,A、C两点分别在x轴、y轴的正半轴上 OA:OC=2:1.若直线

设b点坐标为b(2s,s)(因为oa:oc=2:1,s为未知数).因为函数y=8/x经过b点,所以s=8/2s,解得s等于2(s等于-2不合题意舍去).则b点坐标为b(4,2).所以矩形中点的坐标为(

如图以知抛物线y=x^2+bx+c经过矩形ABCD的两个顶点AB

1)由A(0,2)B(4,2)代入抛物线,得到方程组,解得y=x^2-4x+22)过P点y轴垂线PO'因为AO=2S△APO=1/2*AO*PO’=3/2解得P的横坐标为3/2代入抛物线方程得到P纵坐

如图:矩形ABCD的顶点B、C在x轴的正半轴上,A、D在抛物线

⑴Y=-2/3(X^2-4X+4)+8/3=-2/3(X-2)^2+8/3,对称轴:X=2,A(X,Y),D(4-X,Y),AD=4-2X,AB=Y=-2/3X^2+8/3X,∴P=2(AD+AB)=

如图,过矩形ABCD的四个顶点作对角线AC、BD的平行线,分别相交于E、F、G、H四点,则四边形EFGH为(  )

由题意知,HG∥EF∥AC,EH∥FG∥BD,HG=EF=AC,EH=FG=BD,∴四边形EFGH是平行四边形,∵矩形的对角线相等,∴AC=BD,∴EH=HG,∴平行四边形EFGH是菱形.故选C.