如图,边长为4正方形ABCD中,E为边AD的中点,连接线段EC交BD于点F

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 13:51:43
如图,边长为4正方形ABCD中,E为边AD的中点,连接线段EC交BD于点F
如图,正方形的边长为6厘米,ABCD为正方形各边的中点,求正方形中阴影部分的面积

麻烦自己算一下!好的老师只会指点一下哦!毕竟别人是不能代替你考试的的!帮助别人真高兴!o(≧v≦)o~应该学过,如果四边形的对角线相互垂直,那么面积就等于两条对角线相乘再除以2正方形的面积可以用对角线

如图,已知正方形ABCD的边长为4,对称中心为点P,

再问:对称中心是什么?再答:

如下图,正方形ABCD边长为1

(π(派)-2)/2

如图,正方形ABCD的边长为4,△ABE是等边三角形,点E在正方形ABCD中,在对角线AC上存有一点P

不清楚追问,清楚了希采纳再问:看不懂求过程再答:∵ABCD是正方形∴AC垂直平分BD∴当点P在AC上时,都有BP=DP∵当点B,P,E不在同一直线时,BP+PE>BE,当B,P,E在同一直线时,BP+

如图,已知四边形abcd和cefg都是正方形,且正方形abcd的边长为10厘米,那么图中阴影三角形efd的面积为多少

连接CF,则CF//BD,(同位角相等,都等于45°,两直线平行)因为平行线间的距离相等所以三角形FBD与三角形CBD的面积相等,(等底等高)所以,阴影三角形BDF的面积=10×10/2=50(平方厘

如图,边长为1的正方形ABCD中,P为正方形内一动点,过点P且垂直于正方形两边的线段为

第一个问题:∵ABCD是正方形,又EF⊥AD、GH⊥AB,∴容易证得:ABFE、ADHG都是矩形,∴BF=AE、DH=AG,又AG=AE,∴BF=DH.∵ABCD是正方形,∴AB=AD、∠ABF=∠A

如图平行四边形ABCD中;-AB=2,分别以AB、A.D为边长 画两个正方形,正方形ABEF的面积等于4,正方形ADGH

如果你还没有立体的概念,那你只要延长fa到hc上交于点o,则高为fo=(af+ao),s=(ef+hc)fo/2.如果这是立体图形,每一种bad角都对应有一个面积范围,没有固定值,但能求出最大和最小值

如图,边长为1的正方形ABCD绕A逆时针旋转30°到正方形ABCD,图中阴影部分的面积?

重叠部分是两个全等的直角三角形面积为1×√3/3=√3/3阴影面积=1-√3/3

如图,在正方形ABCD中,对角线2倍根号2,则正方形的边长为?

设正方形的边长为x,则x²+x²=(2√2)²2x²=8x²=4x=2所以正方形的边长为2

如下图,平行四边形ABCD中,AB=2,分别以AB、AD为边长画两个正方形,正方形ABCD的面积等于4,正方形ADGH的

因为正方形ADGN的面积是8所以边长HD=4(正方形面积=1/2*对角线的平方)AB=CD=2又平行四边形ABCD的面积是4所以平行四边形的高是2梯形的高=平行四边形的高+BE=4上底=AB=2梯形的

如图,正方形ABCD的边长为4,正方形OEFG的边长为6,O是正方形ABCD的对角线交点,则图中阴影部分面积为4

晕可以将oc连接,看不是分割成两部分了吗?由于o是正方形ABCD的对角线交点,设oe交bc于h,og交cd于j,obh等于ocj,那么图中阴影部等于三角形obc(即正方形ABCD的4分之一)啊懂了吧?

如图,在六面体ABCD-A1B1C1D1中,四边形ABCD是边长为2的正方形,四边形A'B'C'D'是边长为1的正方形,

 如图,⑴  E.F是CD,DA的中点,A1D⊥D1D  FD⊥D1D A1D,FD共面,∴A1D∥=FDA1D1DF是矩形,A1F∥=D1

如图,多面体ABCDEF中,已知ABCD是边长为4的正方形,EF平行平面ABCD,EF=2,EF∥AB 平面FBC⊥平面

简单写一下哈:(1)∵ABCD是正方形,M、N是AB、CD中点∴MN∥BC∵MB=2=EF,EF∥AB∴BFEM是平行四边形∴ME∥BF∵MN∩ME=平面MNE,BC∩BF=平面BCF∴平面MNE∥平

已知:如图,平面直角坐标系xOy中,正方形ABCD的边长为4,

OA=OD=AD/sqrt(2),D(0,2sqrt(2))如图,PED-PFA全等,PEOF为正方形,PO平分DOF当A接近O时,PE接近1/2AB,当A接近F时,PE接近PD,所有范围是1/2AD

如图,正方形ABCD边长为4,AE=2BE,求阴影

设AC、DE交于FAC为正方形对角线,也为∠BAD的角平分线,在三角形AED中应用角平分线定理,EF/FD=AE/AD=2/3,又S△CDE=1/2S口ABCD=8,S△CDF/S△CEF=DF/EF

如图,已知在正方形ABCD中,BE=5,MN为AE的中垂线,正方形ABCD的边长为12,求MN的长

链接EN,设EN=x,则EN=AN=x,BN=12-x因为三角形ENB是直角三角形,所以5^2+(12-x)^2=x^2x=169/24由于AE是直角三角形ABE斜边,算出长度等于13,所以ON(O是

如图,已知正方形ABCD的边长是4,对角线AC、BD相交于点O,另一个边长也为4的正方形OEFG,两个正方形重

不变作OP⊥BC,作OQ⊥CD,证得△OPM≌△OQNS四边形OMCN=S△OQN+S四边形OMCQ=S△OPM+S四边形OMCQ=S正方形OPCQ=1/4S正方形ABCD=1/4*4*4=4