如图,设M是三角形ABC的重心,过M的直线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 19:15:19
垂心AM·BC=(OM-OA)·(OC-OB)=(OC+OB)·(OC-OB)=OC^2-OB^2=|OC|^2-|OB|^2=0故AM⊥BC同理可得BM⊥AC,从而M是垂心
延长PM交AB于点D,延长PN交BC于点E,连结DE由于M,N是三角形PAB和三角形PBC的重心所以PM/PD=2/3,PN/PE=2/3故PM/PD=PN/PE又角P=角P所以三角形PMN相似于三角
S△AOB=S△BOC=S△AOC,理由如下:分别延长AO、BO、CO,交BC、AC、AB于D、E、F,∵O是△ABC的重心,∴AD、BE、CF是△ABC的中线,∴S△ABD=S△ABE=1/2S△A
因为G是重心又因为AE平分BC所以AG:GE=2:3因为GD∥EC所以AG:AE=GD:EC=AD:AC=2;3所以三角形AGD和aec相似所以AGD和AEC面积比为4:9因为E是中点所以aec:ab
因F是△ABC的重心,则:1、点D是边AB的中点,从而有:△ACD与△BCD的面积相等,所以三角形ADC的面积是18;2、且:CF:CD=2:3,:△BCF的面积是△ADC面积的4/9,则△BCF的面
连接AM并延长与BC的交点就是BC中点P;连接AN并延长与CD的交点就是CD的中点Q因为:AM:MP=2:1;AN:NQ=2:1则:MN//PQ又:PQ在平面BCD内、MN在平面BCD外,则:MN//
题目不完整.请把完整题目发来.
设三角形A(a,0),B(b,0),C(c,y)M((a+b+c)/3,y/3)向量AM=((b+c-2a)/3,y/3)向量BM=((a+c-2b)/3,y/3)向量CM=((a+b-2c)/3,-
M是三角形ABC的重心,则MA+MB+MC=0
G为三三角形的重心,则AG=(1/3)AB+(1/3)AC.①.由于P、G、Q三点一直线,所以GP=mGQ,而GP=AP-AG=(3/4)AB-AG,GQ=AQ-AG=λAC-AG,代入,有:(3/4
利用重心到顶点的距离与重心到对边中点的距离之比为2:1可以证明.连接PD交于BC于G,连接PE交AC于H,连接GH那么在三角形PGH中,PD/DG=2:1;PE/EH=2:1;即PD/PG=PE/PH
连接BH由题意知,D是BC、GH的中点,故四边形BGCH是平行四边形.(对角线互相平分的四边形是平行四边形)那么,BG//HC所以∠FGC=∠GCH又因为点F、K分别是AB、BG的中点所以FK//AG
A是△BCD所在平面外一点,M、N分别是△ABC和△ACD的重心,若BD=6,则MN多少? 如图:PQ为△BCD的中位线--->PQ∥BD且PQ=BD/2=3 AM:AP=A
延长BM交AC于点D,再延长BD至E,使DE=DM,连接CE,∵M是△ABC的重心,∴AD=CD,MD=12BM,∵∠ADM=∠CDE(对顶角相等),DE=DM,∴△AMD≌△CDE(SAS),∴AM
先说一下思路:1、先说一下直线和平面平行的判定定理:*如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.2、连接AM、AN并延长,分别交BC、CD于点E、F.3、△AMN∽△A
延长AM交BC于P,延长AN交CD于Q,连接PQ重心嘛所以有AM/MP=2AN/QN=2所以MN平行于PQPQ又在平面BCD上所以MN平行于平面BCD咯纯手打求给分~
如图,连接ED.由题可知,ED是△ABC的中位线∴ED=1/2BC .①∵M,N为
如图:1.向量运算的平行四边形法则 2.重心的性质, 1:2可得答案 A
因为G是重心所以AD平分BC所以BD=DC因为GE//AB,所以角ABD=角GED又角ADB=角GDE所以三角形ADB相似三角形GDE所以|GD|/|AD|=|ED|/|BD|同理|GD|/|AD|=