如图,经过点A(0,-6)的抛物线y=2分之1x的平方 bx c与x轴相交于
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:46:50
(1)已知一次函数y=kx+b(k≠0)的图像经过点A(0,3),B(4,6),那么将点A.B坐标分别代入函数解析式,可得:{b=3{4k+b=6易解得:b=3,k=4分之3所以一次函数解析式y=4分
这题我们要考虑函数的关系是一次函数还是其他的那么我们以A点为例子设人身高为H,路灯离地面L那么我们通过直角三角形相似可以得出一个等式y/(x+y)=H/LyL=Hx+Hyy(L-H)=Hxy=Hx/(
1、最小值-3对称轴-b/2a=-3,at^2+bt=0,t≠0,所以t=-b/a=-3/22、9a-3b=-316a-4b=0a=1,b=4开口向上3、y=-x^2-2xt=-2
3)直接写出该抛物线开口向下t的一个值:注意这里的要求的t并不是一个固定值,只需假设一个开口向下的抛物线,然后把A,P代入求出t即可开口向下,则a
(1)设直线为y=ax+b带入两点A(2,0),B(1,1)得2a+b=0a+b=1所以a=-1b=2所以直线的解析式为y=-x+2把B(1,1)代入y=ax2得a=1,所以抛物线的解析式为y=x2(
OB所在直线为正比例函数设为y=kx将B(18,6)代入得k=6/18=1/3L2:y=(1/3)xL1经过A点,B点∴L1设为y=kx+bAB代入得24=0*k+b6=18*k+bk=-1,b=24
1)∵点A在(-2,8)∴-k/2=8k=-4∴f(x)=-4/x2)将横坐标2和4代入∵-4/2=-2=y1-4/4=-1=y2∴y1
1)作CD⊥OB△CDB是等腰直角三角形∴CD:DB:CB=1:1:√(2)∴CD=DB=√(2)t/2OD=2-√(2)t/2∴点C坐标是(2-√(2)t/2,√(2)t/2)2)作CH⊥BP∵四边
C点坐标为(0,-2),设抛物线方程为y=a(x+1)(x-2)代入C点坐标为-2=-2a得a=1所以抛物线方程为y=(x+1)(x-2)=x²-x-2设P点坐标为(t,t²-t-
∵抛物线开口向上,∴a>0,∵抛物线对称轴为直线x=-b2a=-1,∴b=2a,则2a-b=0,所以③错误;∴b>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc<0,所以①错误;∵x=12时,
设二次函数为y=ax²+bx+c(a≠0)二次函数的图像经过点A(1,0),B(3,0),那么x1=1x2=3是方程x²+b/ax+c/a=0的两个根x1+x2=-b/ax1x2=
法1:B点作x轴的垂线与x轴相交于点D,则BD⊥CD,∵A点经过点C反射后经过B点,∴∠OCA=∠DCB,∴△OAC∽△DBC,又∵BD⊥CD,AO⊥OC,根据勾股定理得出OADB=ACBC=OCCD
1,首先抛物线过原点又过点(2,0)所以对称轴即为x=12,又a>0故而抛物线开口向上故而对于x1<x2<1有y2<y13,由题意知C(3,2)A(2,0)故而所求函数即为y=2x-4要分数急用感激万
(1)设一次函数的关系式为y=kx+b,(1分)依题意,得2=k.0+b−k+b解得b=2k=2(3分)∴一次函数的关系式为y=2x+2.(4分)(2)设点C的坐标为(a,0),连接BC则CA=a+1
A关于x轴的对称点A'坐标是(0,-1)连接A′B,交x轴于点C,作DB∥A'A,A'D∥OC,交DB于D,故光线从点A到点B所经过的路程A'B=A′D2+DB2=(6-0)2+(2+1)2=35.故
AO=OC,入射角就是45度,反射角也是45度,过B做BD垂直于x轴,垂足是D,所以CD=5,A=OC+CD=8.B点坐标是(8,5).AC+CB=3*Sqt(2)+5*Sqt(2)=8*Sqr(2)
(1)因为抛物线经过B(6,0),A(-2,0)两点,所以设抛物线方程为y=a(x-6)(x+2),又因为抛物线过点C(0,3),所以3=a(0-6)(0+2),所以a=-1/4.所以抛物线方程为+3
(1)由抛物线的对称轴是,可设解析式为.\x0d把A、B两点坐标代入上式,得解之,得故抛物线解析式为,顶点为\x0d(2)∵点在抛物线上,位于第四象限,且坐标适合,\x0d∴y<0,即-y0,-
答:点A(0,2)关于x轴的对称点为D(0,-2)BD与x轴的交点即为所求的点C因为:CA+CB=CD+CB=BD所以:最短路程=BD=√[(6-0)^2+(6+2)^2]=√(36+64)=10所以
C(0,-3),y(0)=c=-3,y(-1)=1-3+b(-1)=0,b=-2y=x^2-2x-3=(x-1)^2-4,顶点(1,-4)D(m,m^2-2m-3),BC直线:x-y-3=0D到Bc的