如图,等边三角形ABC内接于圆O,若其边长为4cm则圆O的半径为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 05:08:00
关于如图,三角形ABC内接于圆O
(1)证明:在三角形PAB中,PA+PB>AB,同理,PB+PC>BC,PA+PC>AC将三个不等式左右分别相加,得2(PA+PB+PC)>AB+BC+AC因为AB=BC=AC=1所以2(PA+PB+
证明:连接PA,PB,PC则S△ABC=S△PAB+S△PBC+S△PAC∵S△PAB=1/2AB*PES△PBC=1/2BC*PDS△PAC=1/2AC*PFS△ABC=1/2BC*AH∴1/2AB
解题思路:(1)根据已知利用SAS判定△APC≌△BDC,从而得到PC=DC,因为AP过圆心O,AB=AC,∠BAC=60°,所以∠BAP=∠PAC=12∠BAC=30°,又知∠CPD=∠PBC+∠B
做垂线FI交DE于I设AG长为x,ADE和ABC相似,则DE为2x.因为等边,FI=√3*x,GH=2-x.则√3*x=2-x
用面积法证明,连结PA,PB,PC∵S△PBC+S△PAC+S△PAB=S△ABC即1/2PD*BC+1/2PE*AC+1/2PF*AB=1/2AM*BC又∵AB=AC=BC∴PD+PE+PF=AM
角C等于角E,易证直角三角形ADC与直角三角形ABE相似,AD:AB=AC:AE,AD:6=8:10,AD=4.8
1)在三角形ACE和三角形BCD中,AC=BC(等边三角形三边相等)再问:为啥角ACD与角BCD相等啊,它俩似乎不在同条弧上吧!!!再答:对不起,写错了,应该是
连结OD,∵DE是⊙O的切线,∴DE⊥OD,又DE∥BC,∴OD⊥BD,∴OD平分弧BE,即:弧BD=弧DC,∴∠BAD=∠DAE.又DE∥BC,∠ACB=∠AED,∵∠ACB=ADB,∴∠ADB=∠
连接OA,设EF=x∵△ABC是⊙O的内接等边三角形∵EF∥BC∴∠AEF=∠AFE=60°∴△AEF为等边三角形∴AO⊥EF∴OF=AOtan60°=33=1∴EF=2OF=2.
连接AP,∠BPA=∠BCA=60度,∠CPA=∠CBA=60度,∠BPC=∠CPA+∠BPA=120度
分析 由已知可知∠1=30° ∠2=90° 而CD=5√2 ∴2x平方=50 ∴x=5 就是圆o的半径等于5 这样就能
DA=DB+DC典型的取长补短题:延长BD到E,使DE=DC,连结CE,则△DCE是等边三角形再证明△BCE≌△ADC即可得结论也可以在AD上截取DE=DC,得△DCE是等边三角形,再证明△BDC≌△
证明;∵⊿ABC是等边三角形∴AB=AC=BC,∠ABC=60º在PB的延长线上截取BD=PC,连接AD∵ABPC四点共圆∴∠ABD=∠ACP又∵BD=PC,AB=AC∴⊿ABD≌⊿ACP(
你是问求PD+PE+PF吗?分别连结PA,PB,PC,分成三个小三角形,其面积和为(AB*PD+BC*PE+AC*PF)/2,AB=BC=AC,面积和=BC*(PD+PE+PF)/2,三角形ABC面积
S△ABC=1/2×AB×PF+1/2×AC×PE+1/2×BC×PD=1/2×BC×(PD+PE+PF)S△ABC=1/2×BC×AM ∴PD+PE+PF=AM希望帮得到你\(^o^)/~
设边长为X,由此可知三角形DEF的高为2分之根号3X,由DE平行于BC可得,(3倍根号3-2分之根号3X)/3倍根号3=X/6,解得X=3,故三角形DEF的边长为3
面积相等1/2*PF*AB+1/2*PD*BC+1/2*PE*AC=1/2*BC*AM等边,AM=PD+PE+PF
三角形的高为2倍根号3,内切圆的半径是2倍根号3/3,则阴影面积为12倍根号3-4π/3