如图,等边△CEF的边长与菱形ABCD的长相等
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 01:13:39
设BE=x,EC=8-x,由Rt△EBC有(8-x)^2=x^2+4^2;得x=3;容易看出CE=CF;((1/2)EF)^2=AE^2-((1/2)AC)^2,可解得EF=2倍根号下5;所以周长为1
由题意易得角D=120度,那么角D+角EAF=180度,所以四边形AEDF是圆内接四边形,连接AD,AD平分角BDC,再有圆周角相等,角DEA=角AEF+角FED=角ADF+角FED=60度+角FED
设AF=x则2AF²=EF²=CF²=FB²+CB²即2x²=(4-x)²+4²化简得x²+8x-32=0解方
(Ⅰ)证明:记rn为圆On的半径,则r1=l2tan30°=36l,rn−1−rnrn−1+rn=sin30°=12.所以rn=13rn−1(n≥2),于是a1=πr12=πl212,anan−1=(
DE+DF=2连接AC、BD因为在菱形ABCD中,角ABD=角EBF=60度,角BAE=角BDF=60度,AB=DB所以角ABD-角EBD=角EBF-角EBD即:角ABE=角DBF所以在三角形ABE和
(1)证:∵CE=BE∴∠B=∠CEB同理可得,∠D=∠CFD又△ECF为正三角形∴∠CEF=∠CFE∵∠CEF+∠BEC+∠AEF=∠DFC+∠CFE+∠AFE∴∠AEF=∠AFE再问:CE是不可能
选A连接棱形的那条较短的对角线,易证较短的那条对角线的长度等于棱形的边长.可以看出正六边形的边长是棱形边长的三分之一.可以求得图形的边长为20cm.图形的面积:可以先求出图形一半的面积.在棱形较短的对
由直角三角形HL(斜边与直角边)可知:Rt△CDE≌Rt△CBF∴DE=BF设EA=AF=x;DE=y∴x+y=12x²=y²+1联立消元,得2x²=(1-x)²
解题思路:附件解题过程:附件最终答案:略
此题目的考点是:菱形的性质;等腰三角形的性质;等边三角形的性质.分析:正△AEF的边长与菱形ABCD的边长相等,所以AB=AE,AF=AD,根据邻角之和为180°即可求得∠ADF的度数.正△AEF的边
(1)∵CF=CD∴∠CFD=∠D同理∠CEB=∠B又∠D=∠B(四边形ABCD为菱形)∴∠CFD=∠CEB∵△CFE为正三角形,∠CFD+∠CFE+∠AFE=∠CEB+∠CEF+∠AEF+180度∴
(1)∵CF=CD∴∠CFD=∠D同理∠CEB=∠B又∠D=∠B(四边形ABCD为菱形)∴∠CFD=∠CEB∵△CFE为正三角形,∠CFD+∠CFE+∠AFE=∠CEB+∠CEF+∠AEF+180度∴
(1)证明:∵等边三角形CEF的边长与菱形ABCD的边长相等,∴BC=CE,∴∠B=∠BEC.同理∠D=∠CFD,又∵∠B=∠D,∴∠BEC=∠CFD.∵EC=FC,∴∠CEF=∠CFE.∵∠BEC+
(1)证明:∵等边三角形CEF的边长与菱形ABCD的边长相等,∴BC=CE,∴∠B=∠BEC.同理∠D=∠CFD,又∵∠B=∠D,∴∠BEC=∠CFD.∵EC=FC,∴∠CEF=∠CFE.∵∠BEC+
设∠B为x,则∠C等于180-x,有1知∠CEF与∠CFE相等,∠CEF=∠CFE=x/2,AB=AE,得∠AEB=x,∠AEF=180-∠AEB-∠CEF,60=180-x-x/2,得x=80,即∠
(1)证明:∵△ABC和△ACD,△AEF都是等边三角形,∴∠DAC=∠FAE=60°,∴∠DAN=∠CAM;(2)∵∠DAN=∠CAM,AD=AC,∠D=∠ACB=60°,∴△ADN≌△ACM,∴S
∵四边形ABCD是菱形∴AD‖BC∴∠DAE=∠AEB、∠B+∠BAD=180°∵AB=AE∴∠AEB=∠B∴∠B=∠DAE又∵∠DAE=∠EAF+∠DAF=60°+∠DAF∴∠B=60°+∠DAF又
(1):∵∠ACD=∠BCE=60°∴∠ECD=60°∴∠ECA=∠DCB∵AC=DCEC=BC∴△ACE≌△DCB(SAS)∴AE=BD
证明:∵⊿ACD和⊿BCE均为等边三角形.∴AC=DC,EC=BC;∠ACD=∠BCE=60°.∴∠ACE=∠DCB=120°.又AC=DC,EC=BC.则⊿ACE≌⊿DCB(SAS),AE=DB.在
∵△ABC是等边三角形,AD、BE为中线;∴BD=AE=12,∠ABE=∠BAD=30°,∠AEB=∠ADB=90°;∴AD=BE=AB•sin60°=32;在Rt△BOD中,BD=12,∠DBO=3