如图,等边△ABC内有一点O,且OA=10
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 21:49:29
①∵将△PBC绕C点顺时针旋转60°,∴∠PCD=60°,PC=CD,AD=PB,∠CAD=∠CBP,∵∠PBC+∠PAC=180°,∠DAC+∠PAC=180°,∴P,A,D在一条直线上,∴△PCD
(1)证明:作PH⊥CM于H,∵△ABC是等边三角形,∴∠APC=∠ABC=60°,∠BAC=∠BPC=60°,∵CM∥BP,∴∠BPC=∠PCM=60°,∴△PCM为等边三角形;(2)∵△ABC是等
参考一下:这个题目:O是等边三角形ABC内一点,OA=3.OC=4.OB=5.求角AOC?将ΔAOB绕点A逆时钟旋转60°得到三角形AO'C,连接OO’∵ΔAO'C≌ΔAOB∴O'C=OB,O'A=O
考点:等边三角形的性质;旋转的性质.分析:可通过旋转将△AOB旋转至△BDC,则可得△BOD是等边三角形,把OA,OB,OC放在一个三角形中,进而求出各个角的大小.如图所示,将△AOB旋转至△BDC,
你学过旋转了么?(1)把△ABC绕A点转60度,使B转动后与C重合,O点转动后的点叫O'.因为AO=AO',∠AOO'=60°,所以三角形AOO'是等边三角形.所以OO'=OA.转动后O'C=OB,所
解;(1)∵PA+PB>ABPB+PC>BCPC+PA>AC,∴(PA+PB+PB+PC+PC+PA)>AB+BC+AC,∵AB=BC=AC,∴2(PA+PB+PC)>3AB∴PA+PB+PC>32A
(1)∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴△ADC≌△BOC,∠OCD=60°∴OC=OD则△COD是等边三角形;(2)△AOD为直角三角形.∵△COD是等边三角形.∴∠ODC=60
∵⊿ABC与⊿COD都是等边三角形,∴∠ACB=∠OCD=60度,∴∠ACB-∠OCA=∠OCD-∠OCA,即∠BCO=∠ACD,又BC=AC,OC=DC,∴⊿BOC≌⊿ADC
△APC与△BPE存在旋转关系.在△BPE与△BPC中BP=BP∠PBA=∠PBCBE=BC所以两个三角形全等所以∠PEB=∠PCB,PC=PE且∠PCA=∠PCB则∠PEB=∠PCA在等边三角形AB
已知△ADC为△BOC按顺时针方向旋转60°所得,所以OC=DC,∟OCD=60°,由此可证:△COD是等边三角形
(1)证明:∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴CO=CD,∠OCD=60°,∴△COD是等边三角形.(2)当α=150°时,△AOD是直角三角形.理由是:∵将△BOC绕点C按顺时针
过点D作DG∥AB交AC于G∵等边△ABC、等边△ADE∴AB=AC,AD=AE,∠ACB=∠B=∠BAC=∠DAE=60∵∠BAD=∠BAC-∠CAD,∠CAE=∠DAE-∠CAD∴∠BAD=∠CA
1.角ACD+角ACO=60度,角BCO+角ACO=60度所以ACD=BCO又因为BC=AC,OC=DC所以边角边三角形BOCADC全等所以角ADC=角BOC=角a2.角ADC=150度,角ODC=6
1,因为三角形ABC是等边三角形,所以角ACB=60度又因为三角形ADC全等于三角形BOC,所以角OCB=DCA所以角OCD=角OCA+角ACD=角OCB+角OCA=角ACB=60度因为全等,所以OC
是,因为△ABC是等边三角形,所以∠B=∠C=60°,因为OE‖AB,OF‖AC,所以∠OEF=∠B=60°,∠OFE=∠C=60°,所以△OEF是等边三角形
(1)如图①,△PDC为等边三角形.理由如下:∵△ABC为等边三角形∴AC=BC∵在⊙O中,∠PAC=∠PBC又∵AP=BD∴△APC≌△BDC∴PC=DC∵AP过圆心O,AB=AC,∠BAC=60°
∵OC=OD,且〈DCO=60°∴△DCO为等边三角形,∴〈ODC=60°,∵△NOC≌△CDA,∴〈BOC=〈ADC=α,α=360°-110°-〈AOC=250°-〈AOC,〈AOC=60°+〈A
如果我图猜得正确的话:1)∵△ADC由△BOC旋转至,∴OC=CD,∠OCD=60°,∴△COD是等边三角形;2)此时∠ADO=∠ADC-∠ODC=150°-60°=90°,其他角不是特殊角,∴△AO
角BAP+角PAC=60度角CAQ=角BAP(旋转过来的,角度不变)因此角CAQ+角PAC=60度又因为AP=AQ(也是因为旋转,长度不变)所以三角形APQ是等边三角形所以PQ=AP=3因为三角形AQ
△ABC是等边直角,AB为直径,取中点(圆心o)连接OF,AB=2R因为△AEF是正三角形,所以∠EAF=∠AFB=60°连接BE,AB是直径,所以∠AEB=90°所以∠FEB=30°由相似得∠EAB