如图,等边△ABC中(各内角都是60°)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 16:12:57
如图,等边△ABC中(各内角都是60°)
如图,在△ABC中,以AB、AC为边作等边△ABE、△ACF,以BC为边作等边△BCM

(1)四边形AEMF是平时四边形证明:∵∠MCB=∠ACF=60°∴∠ACB=∠MCF∵BC=CM,CA=CF∴△ABC≌△FMC∴MF=AB=AE同理可得△ABC≌△EBM∴AE=AC=AF∴四边形

如图,在等边△ABC中,D是AB边上的动点,(不与A、B点重合),以CD为一边,向上作等边△EDC,连接.观察并猜想AE

因为cd等于cebc等于ac角bcd等于角ace(60度减角acd)所以三角形bcd全等于三角形ace所以角eac等于角dbc等于角acb等于60度所以ae平行于bc回答完毕

如图,△ABC中,AB=AC,D为BC边上一点,且CA=DB,CA=CD.求△ABC各内角的度数.

题目对吗?再问:如图,△ABC中,AB=AC,D为BC边上一点,且DA=DB,CA=CD。求△ABC各内角的度数。再问:这个才是对的再答:设∠B为X°。因为AB=AC,所以∠B=∠C=X°。同理,∠B

如图,等边△ABC中,D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE,求证:AE‖BC.

证明:∵△ABC和△CDE均为等边三角形∴AC=BC,CD=CE又∠BCD+∠ACD=∠ACE+∠ACD=60°∴∠BCD=∠ACE∴△BCD≌△ACE∴∠CAE=∠B=∠ACB=60°∴AE∥BC再

如图,等边△ABC中,D是AB边上的动点,以CD为一边向上作等边△EDC.连接AE.

可以证明三角形BCD和三角形ACE全等(SAS)然后得到角EAC=角ABC=60度就能证明平行了(内错角定理)

(1)如图1所示,在等边△ABC中,点D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE,求证:AE∥BC;

证明:(1)∵△ABC和△EDC是等边三角形∴∠ACB=∠ECD=60°,AC=CB,EC=DC,∴∠ACD+∠BCD=∠ACE+∠ACD,∴∠BCD=∠ACE,∴△ACE≌△BCD,∴∠EAC=∠B

如图,等边△ABC中,点E,F分别是AB,AC的中点,P为BC上一点,连接EP,作等边△EPQ,连接FQ,EP.

第一小问角度有点问题,好像再问:斜的。你几年级啊。字。真不怎么样,不过还是谢谢了。再答:字写得丑啊?是,我的字确实写起来乱七八糟,哈哈

如图,在等边△ABC中,线段AM为BC边上的中线,动点D在直线AM上时,以CD为一边且在CD的下方作等边△CDE,连接B

(1)60(2)∵△ABC与△DEC都是等边三角形∴AC=BC,CD=CE,∠ACB=∠DCE=60°∴∠ACD+∠DCB=∠DCB+∠BCE∴∠ACD=∠BCE∴△ACD≌△BCE(SAS)∴AD=

2010•聊城)如图,在等边△ABC中,点D是BC边的中点,

解题思路:平行四边形性质解题过程:见附件同学你好祝你天天开心!最终答案:略

如图:在Rt△ABC中,∠ACB=90°,∠BAC=30°,分别以AB,AC为边,在△ABC的外侧作等边△ABE和等边△

在△EGF和△DAF中,∵GE=EB×sin60°=AB×sin60°AD=CA=AB×sin60°∴GE=AD又∵∠GFE=∠AFD(对顶角),∠DAF=∠BAC+∠CAD=30°+60°=90°=

如图,等边△ABC和等边△AEF的一边都在x轴上,双曲线y=k/x(k>0)边OB的中点C和AE的中点D.已知等边△OA

(1)作BM垂直x轴CN垂直x轴则OM=2ON=1BM=2根号3CN=根号3所以C(1,根号3)代入y=k/x得k=根号3所以y=根号3/x(2)作EM1,DN1垂直X轴设AN1=a,则AM1=2aE

如图:在等边△ABC中,BD平分∠ABC,延长BC到F,使CD=CF,连结DF.

证明:(1)∵△ABC是等边三角形,BD平分∠ABC,∴∠CBD=12∠ABC=60°÷2=30°,∵CD=CF,∴∠F=∠CDF=12∠ACB=60°÷2=30°,∴∠CBD=∠F,∴BD=DF.(

如图,在等边△ABC中,AP=BM=CN,判断△EFQ的形状,并说明为什么?

等边三角形!用全等证.要两组(每组3个)全等.

如图,等边△ABC中,AO是∠BAC的角平分线,D为AO上一点,以CD为一边且在CD下方作等边△CDE,连接BE.

(1)证明:∵△ABC与△DCE是等边三角形,∴AC=BC,DC=EC,∠ACB=∠DCE=60°,∴∠ACD+∠DCB=∠ECB+∠DCB=60°,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS

28、如图,等边△ABC中AO是∠BAC的角平分线,D为AO上一点,以CD为一边且在AD下方作等边△CDE,连BE(1)

(1)证明:因为△ABC和△CDE都是等边三角形,所以AC=BC,DC=CE,∠ACB=∠DCE=60°,则∠ACB-∠DCO=∠DCE-∠DCO,即∠DCA=∠BCE.所以△ACD≌△BCE,故AD

已知如图在等边△ABC和等边△ADE中.AD是BC边上的中线,DE交AC于点F.求证AC⊥DE.DF=EF

由等边、中线据三线合一得AD平分角BAC,因为等边,角BAC为60度,所以角DAC为30度,因为等边,角ADE为60度,180度减它们得角AFD为90度,所以AC⊥DE,所以AE是△ADE的高,因为全

已知:如图,在Rt△ABC中,∠C=90°,∠A=30°,分别以AB、AC为边在△ABC的外侧作等边△ABE和等边△AC

证明:过E作EG丄AB于G,如图,∵△ABE为等边三角形,∴BG=12AB,∠ABE=∠BEA=∠EAB=60°,AE=AB,∵Rt△ABC中,∠C=90°,∠A=30°,∴BC=12AB,∴AG=B