如图,等腰三角形DEF中,DE=EF=1,角DEF=135度,求角EFD的正切值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:21:33
如图,等腰三角形DEF中,DE=EF=1,角DEF=135度,求角EFD的正切值
如图,三角形ABC中,AB=AC,BD=CE,角1=角B.求证:三角形DEF是等腰三角形(图有点畸形,在三角形ABC中,

AB=AC告诉我们∠B=∠C证明:∵AB=AC∴∠B=∠C∵∠B=∠1且∠B+∠BDE+∠DEB=180°∠DEB+∠1+∠FEC=180°∴∠BDE=∠FEC在△BDE和△CEF中:∠BDE=∠FE

已知;如图,在△ABC与△DEF中,AB=DE,BC=EF,AF=DC.求证;△ABC≌△DEF

证明:∵AF=DC,∴AF-CF=DC-CF,即AC=DF;在△ABC和△DEF中AC=DFAB=DEBC=EF∴△ABC≌△DEF(SSS).

已知如图,在△ABC和△DEF中,AB=DE,

证明:∵在△ABC和△DEF中,AB=DE,AC=DF,∠A=∠D(已知)∴△ABC≌△DEF(三角形全等定理.边角边)

如图,在△ABC和△DEF中,AB=DF,AC=DE,BE=CF,DE=DF,试说明AC与DF的关系

因为AC=DE,DE=DF所以AC=DF因为BE=CF,BE+EC=CF+EC,所以BC=EF因为AB=DF,DF=DE,所以AB=DE两个三角形三条边分别相等,所以两个三角形全等角ACB=角DFE所

如图,在△ABC和△DEF中,AB=3DE,AC=3DF,∠A=∠D,△ABC周长是36,面积是60,求△DEF的周长和

两三角形相似,相似定理得:△DEF的周长=△ABC周长/(AB/DE)=36/3=12△DEF的面积=△ABC面积/[(AB/DE)²]=36/(3²)=4楼下你分析的对的,但是你

如图,三角形ABC全等三角形DEF,且AB=DE,试证明AB平行DE

B、C、E、F在同一直线上的前提下,结论成立.∵ΔABC≌ΔDEF,∴∠B=∠DEF,∴AB∥DE.

如图△ABC中BE与CF分别是两边上的高D是BC的中点请你判断△DEF是否是等腰三角形

△DEF时等腰三角形证明:∵BE⊥AC∴△BEC是直角三角形∵D是BC的中点∴DE=1/2BC(直角三角形斜边中线,等于斜边一半)同理:DF是直角△BFC的斜边中线∴DF=1/2BC∴DE=DF∴△D

如图,矩形ABCD中,点E,F分别在AB,BC上,△DEF为等腰三角形,∠DEF=90°,AD+CD=10,AE=2,求

∵△DEF为等腰三角形,∠DEF=90°∴DE=EF,∠AED+∠FEB=90°∵∠FEB+∠EFB=90°,∠ADE+∠AED=90°则∠AED=∠EFB,∠FEB=∠ADE又∵DE=EF∴⊿ADE

如图,矩形ABCD中,点E,F分别在 AB,BC上,△DEF为等腰三角形,∠DEF=90°,AD

4再问:过程再答:你知道勾股定理吧?设AD为x,AE=BF=2,BE=10-x,根据勾股定理,DE平方=EF平方,就可算出AD=4再答:你知道勾股定理吧?设AD为x,AE=BF=2,BE=10-x,根

如图,在△ABC中,AB=AC,BD=CE,∠B=∠DEF.求证:△DEF是等腰三角形.

证明:∵∠DEC=∠B+∠BDE=∠CEF+∠DEF,∠DEF=∠B,∴∠CEF=∠BDE.∵AB=AC,∴∠C=∠B.又∵CE=BD,∴△BDE≌△CEF.∴DE=FE.所以△DEF是等腰三角形.

如图,在△ABC中,AB=AC,BD=CE,∠B=∠DEF,求证△DEF为等腰三角形

因为∠DEC=∠B+∠BDE(三角形的一个外角等于其它两个内角之和)又因为∠DEC=∠DEF+∠FEC所以∠B+∠BDE=∠DEF+∠FEC所以∠BDE=∠FEC(∠DEF=∠B)所以△DBE与△EC

已知:如图,在△ABC与△DEF中,AB=DE,BC=EF,AF=DC.

证明:∵AF=DC,∴AF-CF=DC-CF,∴AC=DF,在△ABC与△DEF中AB=DEAC=DFBC=EF,∴△ABC≌△DEF(SSS).

已知:如图,在三角形ABC和三角形DEF中,AB=DE,AC=DF,∠A=∠D,求证:三角ABC全等三角形DEF.

证明:∵在△ABC和△DEF中AB=DE(已知)∠A=∠D(已知)AC=DF(已知)∴△ABC≌△DEF(SAS)

如图,△ABC≌△DEF,且AB=DE,试证明AB∥DE.

因为是全等三角形,且AB=DE所以角DEF=角ABC所以AB平行于DE

如图,在三角形ABC中,AB垂直DE,BC垂直EF,AC垂直DF,三角形DEF也是等边三角形吗

EN⊥MF,EN=MF.F在NE上.∵△ABC是等边三角形∴AB=AC=BC又∵D、E、F是三边的中点∴DE、DF、EF为△ABC的中位线∴DE=DF=EF,∴∠FDE=∠DFE=60°∵△DMN是等

有一块直角三角尺DEF,放在△ABC上,如图,△DEF的两条直角边DE、DF分别经过B、C两点,在△ABC中,∠A=50

(1)∵∠A=50°,∴∠ABC+∠ACB=130°,∵∠D=90°,∴∠DBC+∠DCB=90°,∴∠ABD+∠ACD=130°-90°=40°.故∠ABD+∠ACD为40°;(2)如图所示.∵∠A

4,已知,如图,三角形ABC中,角1=角2,DE//AB,求证,三角形ADE是等腰三角形

因为DE//AB,所以∠1=∠ADE(两直线平行,内错角相等)有因为∠1=∠2,所以∠ADE=∠2,所以三角形ADE是等腰三角形

如图,在三角形ABC与三角形DEF中,∠A=∠D,AB/DE=AC/DF,求证:三角形ABC相似于三角形DEF

两边对应成比例,夹角相等,已经相似了.再问:按其他证明方法证明再答:还有一种方法就是把△DEF搬到△ABC上进行证明了,∵∠A=∠D,把△DEF搬到△ABC上,使A与∠D重合,且DE放在AB上,自然D

轴对称如图,AD是等腰三角形ABC底边BC上的中线,DE⊥AB于E,DF⊥AC于F,求证:∠DEF=∠DFE

因为AD是等腰三角形ABC底边BC上的中线,所以bd=cd等腰三角形ABC角B=角CDE⊥AB于E,DF⊥AC于F所以三角形BED和三角形CFD全等(AAS)即ED=FD即:∠DEF=∠DFE

已知,如图,∠B=∠DEF,AB=DE,△ABC≡△DEF

(1)若以∠ACB=∠DFE得出△ABC≡△DEF,依据是AAS角、角、边(2)若以BC=EF得出△ABC≡△DEF,依据是SAS边角边(3)若以∠A=∠D得出△ABC≡△DEF,依据是ASA角边角(