如图,直线PA,PB是圆O的两条切线,角APB=120°,直径为10

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 08:16:31
如图,直线PA,PB是圆O的两条切线,角APB=120°,直径为10
如图:已知ac是圆o的直径pa垂直ac,连结op,弦cb平行op,直线pb交直线ac于d,bd=2pa证明pb是圆o的切

∵cb//op∴∠aop=∠acb∵ob=oc(bc是弦)∴∠acb=∠obc∵cb//op所以∠obc=bop∴∠aop=∠acb=∠obc=∠bop又有ob=oa,op=op∴△aop≌△bop∴

)如图,PA.PB是圆O的两条切线,A.B为切点,直线OP交圆O于点D,E.交AB于点C.(1)写出图中所有的垂直关系.

由切线长定理:PA的平方=PD*PE4*4=2*PE所以:PE=8PE=PD+2R8=2+2R所以:R=3

如图,PA、PB是圆O的两条切线,切点分别是A、B,直线OP交圆O于点D、E,交AB于点C,已知PA=4,PD=2,求O

图呢据描述可知:三角形DPA和APE相似,可得PD/PA=PA/PE即2/4=4/PE解得PE=8DE=PE-PD=6(直径)则半径OA=3方法二:PA维圆O切线,可知,OA垂直于PA又知OA=OD根

如图,PA、PB是⊙O的切线,切点分别是A、B,直线EF也是⊙O的切线,切点为Q,交PA、PB于点E、F,已知PA=12

∵PA、PB是⊙O的切线,切点分别是A、B,∴PA=PB=12,∵过Q点作⊙O的切线,交PA、PB于E、F点,∴EB=EQ,FQ=FA,∴△PEF的周长是:PE+EF+PF=PE+EQ+FQ+PF,=

如图,已知AC是圆O的直径,PA⊥AC.连接OP,弦CB∥OP.直线PB交直线AC于D,BD=2PA.

(1)连接OB.∵BC∥OP,∴∠BCO=∠POA,∠CBO=∠POB∵BC是圆O的弦∴∠BCO=∠CBO∴∠POA=∠POB又∵PO=PO,OB=OA,∴△POB≌△POA.∴∠PBO=∠PAO=9

如图,PA,PB是⊙O的切线,切点分别是A,B,直线EF也是⊙O的切线,切点为Q,EF分别交PA,PB于E,F点,已知P

依题意:EA=EQ,FB=FQ,PA=PB=10∴C△PEF=PE+PF+EF=PE+PF+EQ+FQ=PE+PF+EA+FB=PA+PB=20连结AO、QO、BO易得:△AOE≌△QOE,△BOF≌

如图,已知AC是圆O的直径,PA切圆O于点A,B是圆O上一点,PB=PA

(1)连接OB、OP△POA和△POB中PA=PB,PO=PO,AO=BO(都是半径)所以△POA≌△POB,∠PAO=∠PBO因为PA为切线,所以∠PAO=90因此,∠POB=90.PB为圆切线(2

如图,已知,AC是圆O的直径,PA⊥AC,连接OP,弦CB平行OP,直线PB交直线AC于点D,BD=2PA

∵BC‖OP,∴∠BCO=∠POA,∠CBO=∠POB.又∵PO=PO,OB=OA,∴△POB≌△POA.∴∠PBO=∠PAO=90°.∴PB是⊙O的切线

如图,已知AC是圆O的直径,PA⊥AC,连结OP,弦CB平行OP,直线PB交直线AC于D,BD=2PA

连接op,ab.交于点e.∵op‖bc,ab⊥bc,∠aop=∠acb∴∠bao=∠OPA,∠AEO=∠ABC即OP⊥AB,∵AO=OB=R∴OP垂直平分AB∴∠APD=2∠OPA设AP=X,BD=2

如图,PA,PB,CD是圆O的切线,A,B,E是切点,CD分别交PA,PB于C

∠APB=40,那么∠ACE+∠CDP=180-40=140,由于A、B、E均为切点,那么OC平分∠ACE,OD平分∠PDC,所以∠ODE+∠OCE=1/2×(∠ACE+∠CDP)=70,∠COD=1

直线PA、PB是圆O的两条切线,A、B分别是切点,且角APB=120 度,圆O的半径是4厘米,

连接BC.在四边形OAPB中,角APB=120度,角A和角B是90度,所以角AOB是60度.又因为角ACB=1/2*角AOB=30度三角形ABC中AC是圆直径,所以角ABC=90度.因此角BAC=18

(2011•大祥区模拟)如图,PA、PB是⊙O的两条切线,切点是A、B,如果PA=23

∵PA、PB是⊙O的两条切线,切点为A、B,∴OA⊥PA于A,OB⊥PB于B,又∵OA=OB,OP=OP,∴Rt△OAP≌Rt△OBP,∴∠AOP=∠BOP=12∠AOB,∴∠AOP=60°.在Rt△

如图1,点O在角APB的平分线上,圆O与PA相切于点C.(1)求证:直线PB于圆O相切

(1)连结OC作OD⊥PBD为垂足∵圆O与PA相切于点C∴OC⊥PA又OD⊥PB点O在角APB的平分线上∴OD=OC即圆心O到直线BP的距离等于圆的半径∴直线PB于圆O相切2设PO交圆于F∵圆O与PA

如图,已知PA、PB是圆O的两条切线,A、B为切点,

证明:△AOP≌△BOP∴PA=PB△AOP≌△CAP∴PA/PC=PO/PA∴PA^2=PC*PO∴PA^2=PB^2=PC*PO

如图,PA.PB是圆o的切线,点A.B为切点

S=Spab+圆-弓形AB=(2倍根号3)^2*4分之根号3+TT*2*2-120/360*TT*2*2+2倍根号3*根号3/2

如图,PAB、PCD是圆O的割线,PA=PB,求证:AB= CD

证明,根据圆割线与切线的关系,可知PA*PB=PC*PD,又因为PA=PC,则PB-PA=PD-PC即:AB=CD

如图 PA、PB是圆O的两条切线 切点分别为点A 、B,求证PA=PB

证明:连接PO∵PA、PB是圆O的两条切线∴OA⊥PA,OB⊥PB又∵OA=OB=半径,OP=OP∴Rt⊿PAO≌Rt⊿PBO(HL)∴PA=PB

(2012•高新区一模)如图,PA、PB是⊙O的两条切线,A、B为切点,直线OP交⊙O于C、D,交AB于E,AF为⊙O的

连接OB;∵PA、PB都是⊙O的切线,∴PA=PB,∠APO=∠BPO;又PO=OP,∴△APO≌△BPO,∴∠AOP=∠BOP,∴AC=BC;①∵PB切⊙O于点B,∴∠PBA=∠AFB,由AC=BC

如图,PA切⊙O于A点,PO平行AC,BC是⊙O的直径.请问:直线PB是否与⊙O相切?并证明.

PB与圆O相切,理由如下:连结OA∵PA切圆O于A,∴∠OAP=90°∵AC∥OP,∴∠C=∠POB,∠CAO=∠AOP,∵OA=OC,∴∠C=∠CAO,∴∠AOP=∠BOP,又∵OP=OP,OA=O