如图,直线l与○O相切于点D,过圆心O作EF∥l

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:07:30
如图,直线l与○O相切于点D,过圆心O作EF∥l
如图,已知直线l与圆O相离,OA⊥l于点A,OA=5,OA与圆O相交于点P,AB与圆O相切于点B.BP的延长线交直线l于

解:设圆的关径为x,则AP=5-x.∵AB=AC.∴AB²=AC²,即OA²-OB²=PC²-AP²,5²-x²=(2√

如图,AB是⊙O的直径,点C在BA的延长线上,直线CD与⊙O相切与点D,弦DF⊥AB于点E,线段CD=10,连接BD.

(1)证明:连接OD.∵直线CD与⊙O相切于点D,∴OD⊥CD,∠CDO=90°,∠CDE+∠ODE=90°.又∵DF⊥AB,∴∠DEO=∠DEC=90°.∴∠EOD+∠ODE=90°,∴∠CDE=∠

如图,直线l是△ABC的对称轴,l与AB交于点D

1、直线l垂直且平分AB,D为AB的中点和垂点2、AB=2AD=4BC=AC=53、从E点做直线l的垂线,延长交BC于F点,即为所求或在CB上量取使得CF=CE,即为所求

如图,在平面直角坐标系中,圆C与y轴相切,且C点坐标为(1,0),直线L过点A(-1,0),与圆C相切于点D,求直线L的

/>连接CD则CD=OC=1,CD⊥AD∵OA=1∴AC=2∴∠CAD=30°∴OB=√3/3设L的解析式为y=kx+b将点A和点B坐标代入可得L的解析式为y=(√3/3)x+√3/3

如图,在平面直角坐标系中圆C与y轴相切,且C点坐标为(1,0)直线l过点A(-1,0)与圆C相切于点D,求直线l的解析式

y=(根号3)/3x+(根号3)/3我们是告诉解析式证明相切.谁告诉我怎么证明额设直线L的方程为:y=kx+b因为过点A,则代入方程得-k+b=0b=k所以直线L方程化为y=kx+k1,圆OC与Y轴相

已知:如图,AB是⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足是D.

连接OC,∵直线l与⊙O相切于点C,∴OC⊥CD;又∵AD⊥CD,∴AD∥OC,∴∠DAC=∠ACO;又∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB.

如图(1),AB为⊙O的直径,C为⊙O上一点,若直线CD与⊙O相切于点C,AD⊥CD,垂足为D.

(1)证明:连OC,如图∵直线CD与⊙O相切于C,∴OC⊥CD,又∵AD⊥CD,∴AD∥OC,∴∠1=∠2,∵OC=OA,∴∠1=∠3,∴∠2=∠3,又∵AB为⊙O的直径,∴∠ACB=90°,∴Rt△

如图1,点O在角APB的平分线上,圆O与PA相切于点C.(1)求证:直线PB于圆O相切

(1)连结OC作OD⊥PBD为垂足∵圆O与PA相切于点C∴OC⊥PA又OD⊥PB点O在角APB的平分线上∴OD=OC即圆心O到直线BP的距离等于圆的半径∴直线PB于圆O相切2设PO交圆于F∵圆O与PA

直线与圆的位置关系 如图,在以点O为圆心的两个同心圆中,小圆直径AE的延长线与大圆交于点B,点D在大圆上,BD与小圆相切

DF=BF.连接OF,∵BD是⊙O的切线,∴OF⊥BD∵BD是⊙O的弦,OF⊥BD,∴OF垂直平分BD.则有:DF=BF.

如图,点O在∠APB的平分线上,⊙O与PA相切于点C. 求证:直线PB与⊙O相切;

连接OC,过O作ON⊥PB于N∵⊙O与PA相切于点C∴OC⊥PA又∵ON⊥PB且O在∠APB的平分线上∴OC=ON∴直线PB与⊙O相切

如图,点O在∠APB的平分线上,⊙O与PA相切于点C.(1)求证:直线PB与⊙O相切;

(1)证明;过点O作OD垂直PB于D所以角ODP=90度因为圆O与PA相切于C所以角OCP=90度所以角OCP=角ODP=90度因为点O在角APB的平分线上所以叫OPC=角OPD因为OP=OP所以三角

九上○!难题!如图,已知三角形abc,ab=ac,o是bc边的中点,圆o与ab边相切于点d.求证:ac与圆o相切!

证:过o点作ac的垂线交ac于e点.所以角oec=90度.因为ab=ac,所以角b=角c.因为圆与ab相切,所以od垂直于ab,即角bdo=90度.因为o为bc中点,所以bo=oc由以上条件得三角形b

如图,AC与圆O相切于点C,线段AO交圆O于点B,过点B作BD//AC交圆O与点D,连结CD,OC,且OC交DB于点E,

1.因为AO//CD角DEC=角OEB三角形DEC全等于三角形BEOOE=CE角CDE=30度DE=DB/2=5根号3/2CE=5CO=2CE=2*5=102.S扇形COB=S+S三角形COB而S三角

如图,直线AB与半径为2的⊙O相切于点C,D是⊙O上一点,且∠EDC=30°,弦EF∥AB,则EF的长度为(  )

连接OE和OC,且OC与EF的交点为M.∵∠EDC=30°,∴∠COE=60°.∵AB与⊙O相切,∴OC⊥AB,又∵EF∥AB,∴OC⊥EF,即△EOM为直角三角形.在Rt△EOM中,EM=sin60

如图,点O在角APB的平分线上,圆o与PA相切于点c. (1)求证:直线PB与圆O相切;

(1)证明:连接OC,作OD⊥PB于D点.∵⊙O与PA相切于点C,∴OC⊥PA.∵点O在∠APB的平分线上,OC⊥PA,OD⊥PB,∴OD=OC.∴直线PB与⊙O相切;设PO交⊙O于F,连接CF.∵O

如图,AB是⊙O的直径,点C在BA的延长线上,直线CD与⊙O相切于点D,弦DF⊥AB于点E,线段CD=10,连接BD.

(1)证明:连接OD.∵直线CD与⊙O相切于点D,∴OD⊥CD,∠CDO=90°,∠CDE+∠ODE=90°.又∵DF⊥AB,∴∠DEO=∠DEC=90°.∴∠EOD+∠ODE=90°,∴∠CDE=∠

如图,AB是○O的直径,PA,PC与○O分别相切于点A,C,PC交AB的延长线于点D,DE⊥PO交PO的延长线于点E,

连接OCPA=PC=6AD=PA/tan∠PDA=8,PD=√(PA²+AD²)=10CD=PD-PC=4,OC=CDtan∠PDA=3OA=OC=3,OD=AD-OA=5tan∠

如图,等腰Rt△ABC的直角边AB、AC分别与圆O相切于点E、D,AD=3,DC=5,直线FG与AC、BC分别交于点F、

(1)连接OD,OE,∵等腰Rt△ABC的直角边AB、AC分别与圆O相切于点E、D,∴∠A=∠ADO=∠AEO=90°,∴四边形AEOD是矩形,∴AD=AE,∴四边形AEOD是正方形,∴OD=AD=3

如图,PA切⊙O于A点,PO平行AC,BC是⊙O的直径.请问:直线PB是否与⊙O相切?并证明.

PB与圆O相切,理由如下:连结OA∵PA切圆O于A,∴∠OAP=90°∵AC∥OP,∴∠C=∠POB,∠CAO=∠AOP,∵OA=OC,∴∠C=∠CAO,∴∠AOP=∠BOP,又∵OP=OP,OA=O