如图,直线AB经过园O上的点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 16:18:20
∵∠DOF和∠COE是对顶角∴∠DOF=∠COE=35°∵AB⊥CD∴∠BOD=90°∴∠BOF=∠BOD+∠DOF=125°
证明:连接OC∵OA=OB,CA=CB,OC=OC∴⊿AOC≌⊿BOC(SSS)∴∠ACO=∠BCO∵∠ACO+∠BCO=180º∴∠ACO=∠BCO=90º即OC⊥AB,根据垂直
(1)设直线为y=ax+b带入两点A(2,0),B(1,1)得2a+b=0a+b=1所以a=-1b=2所以直线的解析式为y=-x+2把B(1,1)代入y=ax2得a=1,所以抛物线的解析式为y=x2(
证明:AB为⊙O的切线,所以OC垂直AB又因为CA=CB,所以,OC为垂直平分线因此有OA=OB
话说第一题.很简单.相似三角形概念.(1)点A和点F同在圆上,且都对应弦BC,所以角A=角F,CD垂直于AB,那么角DCB=角A,所以角DCB=角F,因此,三角形FCB相似于三角形CBG,所以BC/B
证明:连接OC∵OA=OB,AC=CB,OC=OC∴△AOC≌△BOC∴∠ACO=∠BCO∵∠ACO+∠BCO=180°∴∠ACO=90°∵C在⊙O上∴AB是⊙O的切线
若两圆相交,则1<AB<3,当点A在点B的左侧时,AB=6-t,即1<6-t<3,解得3<t<5;当点A在点B的右侧时,AB=t-6,即1<t-6<3,解得7<t<9.故答案为:3<t<5或7<t<9
(1)因为抛物线方程为:y=X^2+4X 配方得:y=(X+2)^2-4, 所以抛物线的顶点坐标为(-2,-4). 即A的坐标为(-2,-4) (2
答案是121°先用对顶角相等,得∠AOC的对顶角也为28°根据垂直,得∠EOD=62°因为OG是角平分线得∠GOD=31°所以∠GOF=31°+90°=121°
这道题没有具体的函数关系式这道题主要的是看我们的趋势判断能力因为这里面没有数值写不出具体的关系式只能说是一个抛物线的数值关系你们现在还没有学到高中才有的哈你也可以看看http://baike.baid
(1)已知∠AOC=60°,∴∠BOC=120°,又OM平分∠BOC,∠COM=12∠BOC=60°,∴∠CON=∠COM+90°=150°;(2)延长NO,∵∠BOC=120°∴∠AOC=60°,当
是.因为O,C都在AB的垂直平分线上,OC垂直AB,同时OC=半径,C必然是切点.
第一题用反证法,假设不是切线,即直线跟圆有两个交点,而OA=OB,可得出A、B关于过O点作AB的垂线对称,而该垂线自O点向AB方向与圆仅一个交点;而CA=CB,则C必在AB的中垂线上,同理,另外一点也
(1)抛物线y=x^2+4x=(x+2)^2-4与x轴分别相交于点B(-4,0)、O(0,0),它的顶点为A(-2,-4).(2)l:y=-2x,①P(-2/√5,-4/√5)时BP⊥OP,四边形BA
1)由角的平分线的定义和等角的余角相等求解;(2)由∠BOC=120°可得∠AOC=60°,则∠RON=30°,即旋转60°或240°时ON平分∠AOC,(3)因为∠MON=90°,∠AOC=60°,
证明连接OC∵OA=OB,CA=CB,∴OC⊥AB,∴AB是⊙O的切线.BC2=BD*BE.证明:∵ED是直径,∴∠ECD=90°,∴∠E+∠EDC=90°.又∵∠BCD+∠OCD=90°,∠OCD=
符合条件的点P共有三个.(1)当点P在BA延长线上P1点时:若OQ=P1Q,则∠QOP1=∠QP1O,设∠COQ=X,则∠QP1O=X+30.∠OCQ=X+60=∠OQC. 则:2(X+60