如图,直线AB与圆O相切于点,弦CD平行于AB,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 16:13:07
连接BC∵OA=OC∴∠BAC=∠ACO∵AC平分∠DAB∴∠DAC=∠BAC∴∠DAC=∠ACO∴AD∥OC∵CD切圆O于C∴OC⊥CD∴AD⊥CD∴∠ADC=90∵直径AB∴∠ACB=90∴△AC
解:设圆的关径为x,则AP=5-x.∵AB=AC.∴AB²=AC²,即OA²-OB²=PC²-AP²,5²-x²=(2√
(1)证明:连接OD.∵直线CD与⊙O相切于点D,∴OD⊥CD,∠CDO=90°,∠CDE+∠ODE=90°.又∵DF⊥AB,∴∠DEO=∠DEC=90°.∴∠EOD+∠ODE=90°,∴∠CDE=∠
连接OC,∵直线l与⊙O相切于点C,∴OC⊥CD;又∵AD⊥CD,∴AD∥OC,∴∠DAC=∠ACO;又∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB.
1.连接OC,切线垂直,∵平分角,∴∠CAD=∠BAC,∵∠OAC=∠OCA.∴∠CAD=∠OCA,∴OC∥AD,∴∠ADC=∠OCD=90°即AD⊥CD.2.有一便于理解的方法:连接BC,过点C作C
(1)连接OC∵OC=OA∴∠CAO=∠OCA又∵CD与圆O相切∴∠OCD=90°即∠OCA+∠DCA=90°∴∠CAO+∠DCA=90°又∵AC平分∠DAB∴∠DAC=∠CAO∴∠DAC+∠DCA=
1,连接AC,AD,AB,CO因为AB是直径,CO是半径,所以AO=BO=CO,故CO将角AOB平分,易得角AOC=角COB=90度,角CAO=45度,因为AC平分角DAB,所以角DAC=角CAO=4
1.证明:连接OC则OA=OC,OC⊥CD∴∠OAC=∠OCA∵AC平分∠DAO∴∠OCA=∠OAC=∠CAD∴AD‖OC∴AD⊥CD2.连接BC∵∠DAC=30°∴∠BAC=30°∵AB是直径∴∠A
(1)连结OC作OD⊥PBD为垂足∵圆O与PA相切于点C∴OC⊥PA又OD⊥PB点O在角APB的平分线上∴OD=OC即圆心O到直线BP的距离等于圆的半径∴直线PB于圆O相切2设PO交圆于F∵圆O与PA
连接OC,过O作ON⊥PB于N∵⊙O与PA相切于点C∴OC⊥PA又∵ON⊥PB且O在∠APB的平分线上∴OC=ON∴直线PB与⊙O相切
(1)证明;过点O作OD垂直PB于D所以角ODP=90度因为圆O与PA相切于C所以角OCP=90度所以角OCP=角ODP=90度因为点O在角APB的平分线上所以叫OPC=角OPD因为OP=OP所以三角
证:过o点作ac的垂线交ac于e点.所以角oec=90度.因为ab=ac,所以角b=角c.因为圆与ab相切,所以od垂直于ab,即角bdo=90度.因为o为bc中点,所以bo=oc由以上条件得三角形b
因为AB=OA又因为OC=OA(同圆内半径相等)所以OB=2OA=2OC因为BC与圆O相切,所以角C为90度所以三角形OBC为Rt三角形因为OB=2OC所以角B=30度(在直角三角形中30度的角所对的
(1)证明:连接OC,作OD⊥PB于D点.∵⊙O与PA相切于点C,∴OC⊥PA.∵点O在∠APB的平分线上,OC⊥PA,OD⊥PB,∴OD=OC.∴直线PB与⊙O相切;设PO交⊙O于F,连接CF.∵O
由弧长公式,得,弧AB:nπR/180=πR/3解得n=60即∠AOB=60°连OD,O'C,则OD经过O'点因为OC,OB为切线所以∠COD=∠AOB/2=30°在直角三角形OCO'中,OO'=2C
(1)证明:连接OD.∵直线CD与⊙O相切于点D,∴OD⊥CD,∠CDO=90°,∠CDE+∠ODE=90°.又∵DF⊥AB,∴∠DEO=∠DEC=90°.∴∠EOD+∠ODE=90°,∴∠CDE=∠
∵∠COE=3∠EOD,又∠COE+∠EOD=180°∴∠EOD=180°÷(3+1)=45°∵∠AOE=90°∴∠BOE=180°-90°=90°∴∠BOD=∠BOE-∠EOD=90°-45°=45
(1)连接OD,OE,∵等腰Rt△ABC的直角边AB、AC分别与圆O相切于点E、D,∴∠A=∠ADO=∠AEO=90°,∴四边形AEOD是矩形,∴AD=AE,∴四边形AEOD是正方形,∴OD=AD=3
1.证明:连结OC因为CE=CB,半径OE=OB,OC是公共边所以△OEC≌△OBC(SSS)则∠OEC=∠OBC又DE与圆O相切于点E,即∠OEC=90°则∠OBC=90°所以BC是圆O的切线,且以