如图,点P是正方形ABCD内的一点,BA=4,BP=3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:30:06
如图,点P是正方形ABCD内的一点,BA=4,BP=3
如图,已知正方形ABCD的面积为64,△ABE是等边三角形,且点E在正方形ABCD内.

正方形ABCD的面积为64∴边长=8以AC为轴做点D的对称点F易证  点F与点B重合所以  DP = BP所以  DP&

如图,点P是正方形ABCD内的一点,连接PA、PB、PC.若PA=a,PB=2a,PC=3a

是求角APB的度数吧?以B为圆心旋转三角形BAP使A与C重合得三角形BCF,连接PC,则PA=CF=a,BF=PB=2a,角ABP=角CBF,角PBF=90度,角BPF=角BFC=45度,PF=2√2

如图,在正方形ABCD所在的平面内,画出与正方形各边均构成等腰三角形的点P,并指出这样的点有几个?

直线EF、MN是正方形的对称轴,所以,直线EF上的点,能与AB、CD两边构成等腰三角形,直线MN上的点,能与AD、BC两边构成等腰三角形,所以,要能与正方形各边都能构成等腰三角形,这样的点必须同时在E

如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,

这题是做对称点以AC为轴做点D的对称点F易证  点F与点B重合所以  DP = BP所以  DP + 

如图,四边形ABCD是圆0的内接正方形,点P为弧BC上一动点,求证;PA=PC+根号2乘PB

证明:在PA上取一点E,使AE=CP,连接BE.因为四边形ABCD是圆0的内接正方形所以,AB=CB,角BAE=角BCP,角ABC=90度所以,三角形BAE全等于三角形BCP所以,BE=BP,角ABE

如图,已知点P为正方形ABCD内一点,连结PA、PB、PC.

1、(1)扫过区域是个以a为半径,圆心角为90度的扇形,所以面积是πa^2/4.(2)由已知,P'B=PB=4,P'C=2,且∠PBP'=90,所以∠PP'B=45,PP'=4√2;又因为∠BP'C=

如图 正方形abcd的边长1+根号3,△ABE是等边三角形,点E在正方形ABCD内,点P是对角线AC上的动点,当PD+P

因为PD始终等于PB,PD+PE的和最小即为PB+PE的和最小,根据两点之间线段最短,P应在AC与BE交点处,过P作PF垂直AB,垂足为F,设PF为x,角FAP为45°,所以AF=PF=x.直角三角形

如图,正方形ABCD的面积为12,三角形ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE

使P点是BE与AC的交点则可,这时PE+PD[(最小值)]=BE=AB=√(12)=2√(3),证明:连接BD,则AC是BD的垂直平分线,∴PD=PB,∴PD+PE=PB+PE=BE,在AC上任取异于

如图,正方形ABCD的面积为25,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和

这个题目其实不复杂.连接PB,则PD=PB,那么PD+PE=PB+PE,因此当P、B、E在一直线的时候,最小,也就是PD+PE=PB+PE=BE=AB=5

如图,正方形ABCD的边长为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和

D12.将E关于AC对称到E',连接AE',DE'.则DE'就是所求的PD+PE和的最小值.不难求出DE'=12.(全等,等边三角形)

如图,正方形ABCD的边长为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P

这题是做对称点以AC为轴做点D的对称点F易证  点F与点B重合所以  DP = BP所以  DP + 

如图,正方形ABCD的面积为10,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,

∵ABCD是正方形∴AC⊥BD AB=AD=A=BC=CD=√10∵△ABE是等边三角形∴AB=BE=AE=√10要使PD+PE的和最小以AC为对称轴,做D的对称点,由于BD⊥AC所以D的对

如图,边长为1的正方形ABCD中,P为正方形内一动点,过点P且垂直于正方形两边的线段为

第一个问题:∵ABCD是正方形,又EF⊥AD、GH⊥AB,∴容易证得:ABFE、ADHG都是矩形,∴BF=AE、DH=AG,又AG=AE,∴BF=DH.∵ABCD是正方形,∴AB=AD、∠ABF=∠A

2,如图2,在正方形ABCD所在的平面内,画出与正方形各边均构成等腰三角形的点P,并指出这样的点有几个

 设正方形为ABCD 三种类型的点.加起来应该是9个吧 1、AC、BD的交点P1显然符合条件,这样的点只有1个 2、在正方形内作等边三角形ABP2,P2与各边组

已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150.

证法(一)作CE⊥PD,垂足为E,显然∠DCE=15°.作∠CDF=15°,DF交CE于F.则∠FDP=60°.易证△APD≌△CFD,∴DF=DP,故△FDP是正三角形.∵EF⊥DP,∴EF平分DP

如图,在四棱锥P-ABCD中,四边形ABCD为正方形,P点在平面ABCD内的射影为A,则二面角

∵P点在平面ABCD内的射影为A∴PA⊥平面ABCD则PA⊥CD∵四边形ABCD为正方形∴CD⊥AD则CD⊥平面PAD∵CD∈平面PCD∴平面PCD⊥平面PAD则二面角C-PD-A为直角

如图,点p在正方形abcd内,△bpc是正三角形,若△bpd的面积是根号3-1,求正方形abcd的边长

设正方形的边长为n,P到BC的高为(根3)n/2角PCD=30度,D到AP的距离为n/2三角形PBC的面积:S1=n*[(根3)n/2]*(1/2)=(根3)n^2/4三角形PCD的面积:S2=2*(