如图,点p为等边三角形abc外接圆劣弧bc上一点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 23:23:11
1.取AB的中点D,连接CD,因ABC为等腰三角形,故CD⊥AB,CDP为直角三角形.则有CP=√(CD²+DP²),其中CP=Y,CD=3√3/2,DP=3/2-AP=3/2-X
(1)由题意可知ABPC四点共圆,所以∠APC=∠ABC=60°,在PA上取PD=PC,所以△PCD是正三角形,所以CD=CP,∠ACD=60°-∠BCD=∠BCP,又因为AC=BC,所以△ACD≌△
将△BAP绕B点逆时针旋转60°得△BCM,则BA与BC重合,如图,∴BM=BP,MC=PA=2,∠PBM=60°.∴△BPM是等边三角形,∴PM=PB=23,在△MCP中,PC=4,∴PC2=PM2
这个题目主要考察的是正弦定理和余弦定理的应用.(1)用正弦定理即可求出 EP BP的长度.(2)EQ=EP EF=10 ∠FEQ=60°-45°(∠FEQ=∠QEP-∠PEF ∠PEF=∠
∠QFC=60°.不妨设BP>√3AB,如图1所示.∵∠BAP=∠BAE+∠EAP=60°+∠EAP,∠EAQ=∠QAP+∠EAP=60°+∠EAP,∴∠BAP=∠EAQ.在△ABP和△AEQ中AB=
BP=2PQ证明:∵等边△ABC∴AB=AC,∠BAC=∠ACB=∠ABC=60∵AE=CD∴△ABE≌△CAD(SAS)∴∠ABE=∠CAD∴∠BPD=∠ABE+∠BAD=∠CAD+∠BAD=∠BA
∵三角形ABC为等边三角形∴AB=BC=CA,∠A=∠B=∠C又,AD=BE=CF∴△ABE≌△BCF≌△CAE∠BAE=∠CBF=∠ACD,∠AEB=∠BFC=∠CDA∴∠AMD=∠BNE=∠AMD
1)2t-t=20∴t=202)①P在BC上,Q在AC上则0<t≤5∴0.5(10-t)×根号3t=8根号3t1=2t2=8(不合舍去)②P在BC上,Q在AB上5<t≤100.5(10-t)×根号3(
(1)证明:在三角形PAB中,PA+PB>AB,同理,PB+PC>BC,PA+PC>AC将三个不等式左右分别相加,得2(PA+PB+PC)>AB+BC+AC因为AB=BC=AC=1所以2(PA+PB+
过E作AC的平行线,然后延长CB交这个平行线于F点∠C=∠F,∠EBF=60°=∠F∴△EBF是等边三角形∴EB=FE∵CD=BE∴CD=FE∵∠CPD=∠BPE,∠F=∠C∴△CPD≌△FPE∴DP
∵正△ABC∴AB=AC∠BAC=∠C又∵AD=CE∴△ABD≌△CAE∴∠ABD=∠CAE∴∠APD=∠ABP+∠PAB=∠BAC=60°∴∠BPF=∠APD=60°∵Rt△BFP中∠PBF=30°
因为三角形ABP绕点A逆时针旋转后,能与三角形ACQ重合,所以三角形ABP与三角形ACQ全等所以AP=AQ=3因为三角形ABC是等边三角形所以∠BAC=∠ABC=60`又因为∠PAC+∠BAP=∠AB
说一下思路,因为ABC为等边三角形,可用边角边证明三角形ABE和三角形ACD全等,所以AB=BE,角ABE=角DAC,角BPQ=角ABE+角BAQ=角DAC+角BAQ=60度,所以BP=2*PQ=6,
∠APE=60°BP=2PQ再问:过程有吗再答:(1)△ADC全等于△ABC,所以∠PAE=∠ABE,又因为∠PAE+∠APE+∠AEP=∠ABE+∠BAE+∠AEP=180°,所以∠APE=∠BAE
设当运动t秒时,线段PQ按逆时针方向旋转60°得线段QD,此时点D恰好落在BC边上,则BP=t,CQ=2t,如图,∴QP=QD,∠PQD=60°,∴∠AQP+∠CQD=120°,又∵△ABC为等边三角
1、证明:∵等边△ABC∴BC=AC,∠C=60∵等边△CDE∴CE=CD∴AD=AC-CD,BE=BC-CE∵P是AD的中点∴PD=(AC-CD)/2∴CP=CD+PD=(AC+CD)/2同理可得:
解题思路:本题主要根据全等三角形的性质、等边三角形的判定进行解答解题过程:
1、∵三角形ABC是等边三角形∴AB=BC,∠ABC=∠C=60°∵BD=CE∴△ABD≌△BCE∴∠ABD=∠CBE在三角形APE中,∠AEP=∠C+∠CBE=60°+∠CBE,∠PAE=∠BAC-
面积相等1/2*PF*AB+1/2*PD*BC+1/2*PE*AC=1/2*BC*AM等边,AM=PD+PE+PF