如图,点P为正△ABC内一点,且PC=3,PB=4,PA=5,求∠BPC的度数.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 12:18:57
如图所示:.
证明:因为AP²=AD²+DP²=AF²+FP²BP²=BE²+EP²=BD²+DP²CP²
因为三角形ABP旋转60度以后得到三角形QDB所以角ABQ=60度,角ABP=角QDB,BP=BD,PA=QD因为角BAC=120度所以角QAB=60度又因为角ABQ=60度所以三角形ABQ是等边三角
可把三角形ABC内的三个三角形分别沿AC,BC,AB折叠,得到对应点P,P2,P3,得到一个六边形,三角形ABC的面积为六边形面积的1/2,然后再连接P1P2P3得到四个特殊的四边形,此题答案也就出来
先说第二问,你可以把三角形PAB绕B点顺时针旋转60度,AB恰好与BC重合,假设P点旋转后为Q点,可以知道QB=PB=8,QC=PA=6角PBQ=PBC+QBC=PBC+ABP=60度,所以三角形PB
选C如图所示,作AB的垂直平分线,①△ABC的外心P1为满足条件的一个点,②以点C为圆心,以AC长为半径画圆,P2、P3为满足条件的点,③分别以点A、B为圆心,以AC长为半径画圆,P4为满足条件的点,
延长BP交AC于D,在△ABD中AB+AD>PB+PD(△两边之和大于第三边)(1)在△PCD中PD+CD>PC(同上)(2)(1)+(2),得AB+AD+PD+CD>PB+PD+PC即:AB+AC>
解;(1)∵PA+PB>ABPB+PC>BCPC+PA>AC,∴(PA+PB+PB+PC+PC+PA)>AB+BC+AC,∵AB=BC=AC,∴2(PA+PB+PC)>3AB∴PA+PB+PC>32A
将△APC绕点A顺时针旋转60°得△AQB,则△AQB≌△APC,∴BQ=CP,AQ=AP,∵∠1+∠3=60°,∴△APQ是等边三角形,∴QP=AP,∴△QBP就是以AP,BP,CP三边为边的三角形
证明:延长BP交AC于点D,在△ABD中,PB+PD<AB+AD①在△PCD中,PC<PD+CD②①+②得PB+PD+PC<AB+AD+PD+CD,即PB+PC<AB+AC,即:AB+AC>PB+PC
(1)证明:在三角形PAB中,PA+PB>AB,同理,PB+PC>BC,PA+PC>AC将三个不等式左右分别相加,得2(PA+PB+PC)>AB+BC+AC因为AB=BC=AC=1所以2(PA+PB+
应该是边长为4CM的“正”三角形吧∵EF‖AB,GH‖BC,MN‖AC∴四边形AMPE,BGPF,CNPH都是平行四边形AM=EP,AE=MP,BG=FP,BF=GP,CN=HP,CH=NP且△ABC
证明:延长BP交AC于点E,则在ΔABE中有:AB+AE>BE即AB+AE>PB+PE又在ΔPEC中有:EP+EC>PC∴(AB+AE)+(EP+EC)>(PB+PE)+PC即AB+AC>PB+PC所
AB+AC>PB+PC理由:因为:延长BP交AC于D.AB+AD>BD=PB+PD因为:PD+CD>PC两式相加所以:AB+AD+PD+CD>PB+PD+PC销去PD所以:AB+(AD+CD)>PB+
如果S△AFP+S△PCD+S△BPE=332,那么△ABC的内切圆半径为(A.1再问:过程呢...再答:由于有根号,所以我没法写,自己去菁优网看看再问:没优点不能看..--再答:
如图,将△ABP绕A点顺时针旋转60°,得到△ACP'.连接PP’,易知APP'为正三角形,得PA=PP'.可知以PA.PB.PC为三边的三角形即是△P'PC.∠P
正六边形ABCDEF的面积=18√3(这个自己会求吧,不会的话再问)连接PA、PB、PC、PD、PE、PF,过P作AB,BC,CD,DE,EF,FA的垂线于G,H,I,J,K,L则S△APB+S△BP
把△APC绕A逆时针旋转60°得到△AP′C′,如图∴∠CAC′=∠PAP′=60°,AC=AC′,AP=AP′,PC=P′C′,∴△APP′为等边三角形,∴PP′=AP,∵∠BAC=120°,∴∠B
如图所示,作AB的垂直平分线,①△ABC的外心P1为满足条件的一个点,②以点C为圆心,以AC长为半径画圆,P2、P3为满足条件的点,③分别以点A、B为圆心,以AC长为半径画圆,P4为满足条件的点,④分