如图,点p为三角形abc的边bc的中点,分别以ab,ac为斜边
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:12:47
中线交点是中线的三等分点BPC里面等底同高BPC面积是10,然后三等分点等底同高BPA是俩BPE是10,同理APC是10加到一起是30.引用怎样证明三角形的重心(中线的交点)是中线的一个三等分点
1.取AB的中点D,连接CD,因ABC为等腰三角形,故CD⊥AB,CDP为直角三角形.则有CP=√(CD²+DP²),其中CP=Y,CD=3√3/2,DP=3/2-AP=3/2-X
将三角形APC以C点为中心顺时针旋转90度,使A与B点重合,设P点转到了Q点,则三角形BQP与三角形APC全等,QC=PC=2,BQ=AP=3,∠BCQ=∠ACP,所以,∠PCQ=∠PCB+∠BCQ=
选C如图所示,作AB的垂直平分线,①△ABC的外心P1为满足条件的一个点,②以点C为圆心,以AC长为半径画圆,P2、P3为满足条件的点,③分别以点A、B为圆心,以AC长为半径画圆,P4为满足条件的点,
作法:作BAC的角平分线交BC边于点P,则点P就是所要确定的点.因为角平分线的性质告诉我们:角平分线上的任意一点到角的两边的距离相等,所以要作角平分线,而不是作线段的垂直平分线.
1.三角形PBQ相似三角形ABC相似设经过x秒,则ab/pb=bq/bc即8/(8-2x)=16/4x32x=128-32x64x=128x=22.三角形QBP相似三角形ABC相似设经过x秒,则ab/
分析:(1)由三角形ABC中任意一点P(x0,y0),经平移后对应点为P′(x0+5,y0-2),可得三角形ABC的平移规律为:向右平移5个单位,向下平移2个单位,即可得出对应点的坐标.(2)利用对应
P(x0,y0)经平移后对应点为P1(-x0,y0),两个点的纵坐标不变,横坐标变化,说明是左右平移,若x0>0,则-x0<0,所以向左平移x0-(-x0)=2x0个单位,三角形ABC上的每一点作同样
如果是要把△BCQ成为等腰三角形的话,前面那P点的说明就没什么意义了,题目也简单化了好多,可以是边QC=BC,CQ=6厘米.或者边BQ=CQ,CQ=4厘米.不知道你题目有没有写错,我觉得这题考得应该是
p是角平分线交点,所以是内切圆的圆心,P到BC的距离就是内切圆的半径,三角形ABC的面积除以三解形周长的一半就是内切圆的半径为24/12=2
应该是边长为4CM的“正”三角形吧∵EF‖AB,GH‖BC,MN‖AC∴四边形AMPE,BGPF,CNPH都是平行四边形AM=EP,AE=MP,BG=FP,BF=GP,CN=HP,CH=NP且△ABC
当DE平行AB时∠DCA=∠CAB又因为∠DCA=∠PCA所以PC=PA同理可证PC=PB即P为AB中点AP=5DE=CD+CE=2PC,即求PC最大值最小值PC最大时为8(P在A点)最小时4.8(P
证明:(1)根据点B(b,0)和点P的坐标(0,p)写出直线BP的斜率为-pb,由点A(0,a)和C(c,0)写出直线AC的斜率为-ac,因为BE⊥AC,所以(-pb)(-ac)=-1,即pa=-bc
设运动时间为t秒AC=√(AB²+BC²)=10AP=t,BQ=2t或BP=t-6(t>6),CQ=2t-8(4
证明:过P作PF⊥AB于F、PM⊥BC于M、PN⊥AC于N.∵角dac,角ace的平分线交于点p∴PF=PNPN=PM∴PF=PM∴点p在角b的平分线上
设,时间是x秒,(6-1x)*(2x)/2=10求出x就行了.再问:太给力了,你的回答完美解决了我的问题!
1)B落到C处旋转的角就等于
设时间为t列式2t*3t/2=6可得t=根号二
证明:∵BM⊥aCN⊥a∴BM∥CN∴∠MBP=∠ECP∵点P为BC的中点∴BP=CP∵∠BPM=∠GPE∴△BPM≌△CPE