如图,点P ⊙O上(1)过点P作⊙O的切线PQ
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 05:19:45
证明:连接AB,则∠AQE=∠ABP,而OA=OB,所以∠ABO=45°所以∠OBP+∠AQE=∠OBP+∠ABP=∠ABO=45°
PA比PB=3比2设比值是x,有PA=3x,PB=2x在RT三角形OPA中,OA=r,AP=3x,OP=r+2x所以有r²+(3x)²=(r+2x)²r²+9x
证明:∵PA是圆O的切线∴∠PAB=∠C∵PA‖BC∴∠PAB=∠ABC∴∠ABC=∠C∴AB=AC
(1)因为P在双曲线上,所以设P坐标为(x,(a²+1)/x)P为AB中点,且B横坐标为0,所以A横坐标为2xA纵坐标为0,所以B纵坐标为2(a²+1)/xAO=2x,BO=2(a
(1)连接AP,过BC中点D作AP平行线交AC于Q点,连接PQ即为所求.(2)连接BD,过C点作BD平行线交AD于Q点,取AQ中点为O,连接BO即为所求.
(1)解法一:连接OB.∵PB切⊙O于B,∴∠OBP=90°,∴PO^2=PB^2+OB^2,∵PO=2+m,PB=n,OB=2,∴(2+m)2=n2+2^2m^2+4m=n2;n=4时,解,得:m1
(1)过p做PM垂直bc,PN垂直DC,角PEC=角PBC(PBCE,四点共圆,或者转角也可以)又pn=pm所以三角形pmb全等三角形pne(2)AF+CE=EF三角形cbe逆时针旋转90°,证三角形
连接PD①∵AB=ADAP=AP∠BAP=∠DAP=45°∴△APB≌△APD∴∠ABP=∠ADP∠PBC=∠PDF∵PE⊥PB∴在四边形BCEP中∠PBC+∠PEC=180°∵∠PEF+∠PEC=1
过点O作OD⊥MN于点D,连接ON,则MN=2DN,∵AB是⊙O的直径,AP=2,BP=6,∴⊙O的半径=12(2+6)=4,∴OP=4-AP=4-2=2,∵∠NPB=45゜,∴△OPD是等腰直角三角
是这个么?已知:OA、OB是⊙O的半径,且OA⊥OB,P是射线OA上一点(点A除外),直线BP交⊙O于点Q,过Q作⊙O的切线交直线OA于点E.(1)如图①,若点P在线段OA上,求证:∠OBP+∠AQE
连接圆心和P点,用尺规画出这一线段的中点,以这条线段的中点为圆心,这条线段的一半长为半径作圆,辅助圆与已知圆的交点就是切点,然后连接就可以了
1、连接MB,角PMN=角MBD又角BMD=角NOD=90所以角MBD=角PNM=角PMN所以PM=PN2、连接OM交BC于E因为∠OMP=90,BC‖MP所以OM垂直BC又角BOM=角MPO所以三角
⑴设P(p,1/2p),p>0,∴p^2+(1/2p)^2=20,p=4,∴P(4,2).⑵P在Y=K/X上,∴K=8,Y=8/X,①当M在第三象限,根据双曲线关于原点中心对称,M为P关于原点的对称点
(1)线段AB长度的最小值为4,理由如下:连接OP,∵AB切⊙O于P,∴OP⊥AB,取AB的中点C,则AB=2OC;当OC=OP时,OC最短,即AB最短,此时AB=4;(2)设存在符合条件的点Q,如图
我正在解答您的问题,请稍候.再问:再答:如图,过点A作圆O的切线AM,则OA⊥AM,即PA⊥AM,∴AM是圆P的切线∴∠1=∠D(弦切角定理)同理∠1=∠EFA,∴∠D=∠EFA,∴EF∥CD&nbs
DC=DP.连接OC.因为CD是圆的切线,所以OC⊥CD,即∠DCP+∠ACO=90°又OA⊥OB,有∠A+∠APO=90°.OA=OC,有∠A=∠OCP,因此∠DCP=∠APO=∠DPC,于是DC=
证明:如图,连接PB、BR,则∠APC=45°,∠APB=90°;故∠BPQ=180°-∠APC-∠APB=45°;又∵∠APB=90°=∠BQR,∴B、Q、R、P四点共圆;于是∠BRQ=∠BPQ=4
2002武汉的如图,以定线段AB为直径作半圆O,P为半圆上任意一点(异于A、B),过点P作半圆O的切线分别交过A、B两点的切线于D、C,AC、BD相交于点N,
http://hi.baidu.com/snm%C4%DD%B6%F9/blog/item/402aaf94dd3e444cd1135efb.html