如图,点O为△ABC的外心,且│ │=4,│ │=2,则 • =_
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:01:32
∵O为内心,∴∠DAB=∠DAC,∴弧BD=弧CD,∴BD=CD,∵∠DBI=∠DBC+∠IBC=∠DAC+1/2∠ABC=1/2(∠BAC+∠ABC),∠DIB=∠IBA+∠IAB=1/2(∠ABC
∵P为△ABC的外心,∴线段长PA=PB=PC,又∵PA+PB=PC,结合平面向量加法的平行四边形法则可知四边形PABC是平行四边形,∴四边形PABC是菱形,且△PAC与△PBC是全等的等边三角形,∠
O为三角形ABC的外心,|AO|=|OB|AO^2=OB^2AO*AB=8AO*(AO+OB)=8AO^2+AO*OB=8|AB|^2=(AO+OB)^2=AO^2+2AO*OB+OB^2=2(AO^
125°∠BOC=140°且O为△ABC外心所以弧BC所对的圆周角BAC=70°所以∠ABC+∠BCA=110°又∵I为△ABC内心∴∠IBC+∠ICB=55°∴∠I=125°
证明:链接CO交AB于点H 链接AO交BC于点G ∵AB=AC 即:∠B=∠BCA&n
设BC中点为P,则OP⊥BC,向量AO=AP+POAO*BC=(AP+PO)*BC=AP*BC+PO*BC=AP*BC=1/2*(AB+AC)(AC-AB)=1/2*(|AC|^2-|AB|^2)=1
设D为BC中点,则AD=(AB+AC)/2点O为△ABC的外心,故OB=OC,又OD为等腰△OBC中线,故OD与BC垂直,向量OD•BC=0于是AO•BC=(AD+DO)
向量BC=向量AC-向量AB向量AO=(向量AC+向量AB)/2所以向量AO*BC=(将上两式代入)=(|AC|^2-|AB|^2)/2=6
作直径BD,连接DA、DC,于是有向量OB=-向量OD当H为△ABC的垂心时,∴CH⊥AB,AH⊥BC∵BD为直径∴DA⊥AB,DC⊥BC∴CH//AD,AH//CD故四边形AHCD是平行四边形∴向量
作MN平行于AQ,交圆o于Q,连NQ设∠OMN=X所以∠ABC=4X,∠ACB=6X因为MN平行于AQ所以∠OAQ=X因为∠AOC=2∠ABC=8X所以∠OAC=(180-8X)/2=90-4X因为∠
设∠OMN=x,则∠ABC=4x,∠ACB=6x;∴∠NOC=180°-10x,∠AOC=8x,∴∠ONM=180°-(180°-10x+8x+x)=x,∴△MON为等腰三角形,∴ON=OM=12OA
设OA=r,则S△OBC=(1/2)r^2*sinBOC=(1/2)r^2*sin2A=(1/2)a*OD,由正弦定理,a=2rsinA,∴OD=rcosA,同理,OE=rcosB,OF=rcosC,
证明:∵A,C,D,F四点共圆,∴∠BDF=∠BAC,又∵∠OBC=12(180°-∠BOC)=90°-∠BAC,∴OB⊥DF(直角三角形的性质).
你能求出第一问,说明你已经发现AE其实是△ABC外接圆的直径,设外接圆圆心为QQE=r=1.5,DE=0.6∴QD=0.9∵O是外心,而AB=AC∴AO是△ABC的高和中线∴AE⊥BC,BD=CD有勾
如图所示:∵∠BOC=110°,∴∠A=12∠BOC=12×110°=55°.故答案为:55°.
(1)作AO延长线OD,∠BOC=∠BOD+∠DOC=2∠BAO+2∠OAC=2*58°=116°(2)O向AB、BC、CD边做垂线,分别交于点D、E、F,则有,∠DOF=180-58=122°,∠B
因为 O是三角形ABC的外心, 所以 角BOC是三角形ABC的外接圆的圆心角, 角BAC是三角形ABC的外接圆的圆周角, 因为 角ABC=60度,角ACB=70度, 所以 角BAC=50
证明如下设O,H分别为外心和垂心取BC中点M,连接AM交OH于G,下面只要证明G是重心就行了OM⊥BCAH⊥BCΔAHG∽ΔMOG⇒AG/GM=AH/OM作ME∥BH交CH于E,取AC中点
o是△ABC的外心,角A=72°,角A是圆周角,而角BOC是圆心角,它和角A都对应的是弧BC,所以角BOC=2*角A=144°