如图,点m是正方形的边ab的中点,连dm,将
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:36:41
分别过点PQ作AB、BC的垂线PE、QF,PE交QF、QN于点G、H,QN交PM于点I.依题意易得PE、QF互相垂直,又因为MP垂直于QN,角PHI=角QHG,所以角EPM=角FQM,又因为PE=QF
延长CE,BA,交与Q点.首先三角形QAE与三角形CDE,三角形FCB全等,所以QE=DC=AB,另外由于三角形EDC与三角形FCB全等,所以可以证明出CE垂直于FB,所以角BME为直角,因此AM是直
EH^2=(1/3AB)^2+(2/3AB)^2=5/9AB^2EH^2/AB^2=5/9小正方形与大正方形的面积之比为5/9
如图:(你题目中的正方形应该是ABCD)证明:1、延长AB至F,使BF=CP,在BC上交于点E.因为:角EBF=角ECP、BF=CP、角BFE=角CPE所以:三角形EBF全等于三角形ECP、FE=EP
对照你的图形阅读下列内容:设AE=x,则BE=(6-X)BF=XS(EFGH)=EF²=X²+(6-X)²=2X²-12X+36这是一个开口向上的抛物线,当X=
(1)CN=DM;CN⊥DM.证明:∵AM=DN;AD=DC;∠A=∠CDN=90°.∴⊿DAM≌⊿CDN(SAS),CN=DM;∠ADM=∠DCN.∴∠CHD=180°-(∠CDH+∠DCN)=18
(1)∵E为AB中点∴AE=BE∵ABCD为正方形∴∠A=∠ABH=Rt∠∵∠AED=∠BEH∴△ADE≌△BEH∴AD=BH∵AD=BC∴BH=BC且M为CG中点∴MB为△MCH中位线∴BM‖GH(
取AD中点,记为F,连接FM,则AF=DF=1/2AD=AM故三角形AFM为等腰直角三角形又有,角FMD=角AFM-角FDM=45°-角FDM角MNB=角NBE-角NMB=45°-角NMB角FDM=角
证明:(1)∵正方形ABCD,∴∠A=∠EBH=90°,AD=BC,∵E是AB的中点,∴AE=BE,∵∠AED=∠BEH,∴△AED≌△BEH,∴AD=BH,∴BC=BH,即点B为CH的中点,又点M为
证明:∵CE⊥BF,垂足为M,∴∠MBC+∠MCB=∠BEC+∠MCB,∴∠MBC=∠BEC又∵AD∥BC,∴∠MBC=∠AFB∴∠AFB=∠BEC,又∵∠BAF=∠EBC,AB=BC,∴Rt△BAF
(1)如图甲,当点E在AB边的中点时:①通过测量DE,EF的长度,猜想DE与EF满足的数量关系是(DE=EF);②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是(NE=BF)请证明你的上述两
1设EF交BC于点P,过点F做FG⊥AM,垂点为G.则⊿EFG∽⊿BEP∵∠BEF=180°-∠DEF-∠AED=90°-∠AED∠ADE=90°-∠AED∴∠BEF=∠ADE∵E是AB的中点,N是A
设EF交BC于点P,过点F做FG⊥AM,垂点为G.则⊿EFG∽⊿BEP∵∠BEF=180°-∠DEF-∠AED=90°-∠AED∠ADE=90°-∠AED∴∠BEF=∠ADE∵E是AB的中点,N是AD
1)DE=EF2)NE=BF3)根据条件得出△ANE为等腰直角三角形,那么∠DNE=135度,又∠EBF=∠ABC+∠CBF=135度,有∠DNE=∠EBF……①DN=BE=1/2AB……②∠ADE+
连接BQ,取BQ中点G,L连接NG、MG,由于M中心,G也是BQ中点,则MG必然平行面B1D1则形成三角形PBQ∵N和G分别是PQ和BQ中点∴NG//PB,PB在面B1D1上,则NG//面B1D1又有
证明:作AH⊥BC于H,延长EP交AH于G,∵l是AD的垂直平分线,∴AM=MD=12AD,l∥AH,又∵四边形ABCD是直角梯形,∴四边形AHCD是矩形,∴AH=CD,∵PE⊥l,∴EG⊥AH,∴四
第一个图呢.第二个,过p向ab做垂线交ab于e.三角形pen全等于三角形abm.所以en=bm=1/3ab,ae=an-en=1/6ab=dp,pc=5/6ab,pc/dp=5:1再问:再答:设AM交
证明:(1)CN=DM,CN⊥DM,∵点M、N分别是正方形ABCD的边AB、AD的中点,∴AM=DN.AD=DC.∠A=∠CDN,∴△AMD≌△DNC(SAS),∴CN=DM.∠CND=∠AMD,∴∠
答:过点F作FG⊥AB交AB于点G所以:GF//AD,GF==AD1)因为:∠FGE=∠ABM=90°因为:EF是AM的垂直平分线所以:∠GEF=90°-∠BAM因为:∠BMA=90°-∠BAM所以:
证明:(1)CN=DM,CN⊥DM,∵点M、N分别是正方形ABCD的边AB、AD的中点,∴AM=DN在△AMD和△DNC中,AM=DN∠A=∠CDNAD=DC,∴△AMD≌△DNC(SAS),∴CN=