如图,点F是正方形ABCD对角线AC上一动点,过F作FD的垂线FE交

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 01:57:21
如图,点F是正方形ABCD对角线AC上一动点,过F作FD的垂线FE交
如图,点E、F、G、H分别是正方形ABCD各边的中点,四边形EFGH是什么四边形

四边形EFGH是一个正方形因为点E、F、G、H分别是正方形ABCD各边的中点所以三角形AEF,BHE,HCG,FDG为全等的等腰直角三角形所以EF=EH=HG=FG,角BHE+角CHG=90度所以菱形

如图,正方形ABCD的边长是5厘米,点E,F分别是AB,BC的中点,求BEGF?

因为:点E、F分别是AB和BC的中点,正方形ABCD的边长是5厘米所以:BE=CF=2.5cm又因为:BC=CD=5,角B=角DCF=90°所以三角形EBC全等三角形FCD所以角CEB=角DFC又因为

如图,正方形ABCD中,点E,F分别是BC,DC边上的点,且AE垂直于EF

1:延长EF交正方形外交平分线CP于点P,是判断AE与EP的大小关系,并说明理由\x0d2:在AB边上是否存在有一点M,使得四边形DMEP是平行四边形,若存在,请证明,若不存在,请说明理由各位速度

如图:点F是正方形ABCD的边CD上的一点,过点A作AE⊥AF

∵正方形ABCD∴AD=AB∠D=∠ABC=90°,∠DAB=90°又∵AE⊥AF∴∠EAF=90°∵∠EAB+∠BAF=90°∠DAF+∠BAF=90°∴∠EAB=∠DAF∵∠ABC=90°∴∠AB

求证明 已知,如图,正方形ABCD中,点E是BA延长线上一点,连接DE,点F在

连接BD因为DF=DC,DG⊥CF,所以由勾股定理FG=GC,因此三角形DFG与DCG全等所以<FDG=<CDG=<CDF/2=(<CDA+<ADF)/2=(90+<

如图,在正方形ABCD中,E.F.G.H分别是正方形ABCD的边AB.BC.CD.DA上的点,且

EH^2=(1/3AB)^2+(2/3AB)^2=5/9AB^2EH^2/AB^2=5/9小正方形与大正方形的面积之比为5/9

如图,点E是正方形ABCD内一点,△CDE是等边三角形,连接EB、EA,延长BE交边AD点于点F.

(1)证明:∵ABCD是正方形∴AD=BC,∠ADC=∠BCD=90°又∵三角形CDE是等边三角形∴CE=DE,∠EDC=∠ECD=60°∴∠ADE=∠ECB∴△ADE≌△BCE.(2)∵△CDE是等

已知如图,O是正方形ABCD对角线上一点,以点O为圆心,OA长为半径的圆O与BC相切与点M,与

∵BC、CD是切线,∴∠ONC=∠ONC=90°,∵ABCD是正方形,∴∠BCD=90°,∴四边形OMCN是矩形,又OM=ON,∴矩形OMCN是正方形,设圆半径为R,OA=OM=CM=R,∴OC=√2

如图,在正方形ABCD中,E是AD的中点,点F在DC上

设AB=4.则BE=√20,EF=√5,BF=5.BE²+EF²=BF²∴∠BEF=90º.BE⊥EF.无量寿佛,佛说苦海无涯回头是岸!施主,我看你骨骼清奇,器

如图,四边形ABCD是正方形,点G是BC上任意一点,DE垂直AB于点E,BF垂直AG于点F,当点G

(1)证明:  ∵四边形ABCD是正方形,BF⊥AG,DE⊥AG  ∴DA=AB,∠BAF+∠DAE=∠DAE+∠ADE=90°  ∴∠BAF=∠ADE  ∴△ABF≌△DAE  ∴BF=AE,AF=

已知:如图,正方形ABCD的边长为8cm,M在CD上,且DM=2cm,N是对角线上的一动点,则DN+MN的最小值为()c

10cm你把D沿AC对称到B,DN+MN的最小值就是BM 那图好像不能显示,你点一下就能看了

如图,正方形ABCD中,E是AD的中点,BD与CE交于点F 如图,正方形ABCD中,E是AD的中点,BD与CE交于点F,

设AF与BE相交于M,DA=DC,∠ADF=∠CDF=45°,FD=FD==>△DAF≌△DCF==>∠DAF=∠DCFAE=ED,∠BAE=∠CDE=90°,AB=DC==>△ABE≌△DCE==>

如图,点E,F,G,H分别是正方形ABCD各边的中点,四边形EFGH是什么四边形?

答:四边形EFGH是一个正方形因为点E、F、G、H分别是正方形ABCD各边的中点所以三角形AEF,BHE,HCG,FDG为全等的等腰直角三角形所以EF=EH=HG=FG,角BHE+角CHG=90度所以

如图,已知点O是正方形ABCD的重心

这题只要证明N为AB中点,就可得出那2个结论可以先设MC=a,DC=2a,MD=根号5a我用:√5a来表示令NC与MD交点为P,则CP=2√5a/55分之2倍根号5可求出MP=√5a/5然后ΔMPC相

如图,ABCD是正方形,P是对角线上的一点,引PE⊥BC于E,PF⊥DC于F.求证:(1)AP=EF:(2)AP⊥EF.

1、过P做PG⊥AB交AB于G∵ABCD是正方形,∴∠ABC=∠DCB=90°∠ABD=∠DBC=45°∵PE⊥BC即∠PEB=90°PG⊥AB即∠PGB=90°∴四边形GBEP是矩形∴∠PBE(∠D

如图,四边形ABCD是正方形,直线MN过点C,BE⊥MN与点E,DF⊥MN于点F.求证:EF=BE+DF

证明:∵正方形ABCD∴BC=DC,∠BCD=90∴∠BCE+∠DCF=180-∠BCD=90∵BE⊥MN,DF⊥MN∴∠BEC=∠DFC=90∴∠BCE+∠CBE=90∴∠CBE=∠DCF∴△BCE

如图,点O是正方形ABCD的对称中心,

解对称理由如下连接AC,∵O是正方形ABCD的对称中心∴OA=OC,AB∥CD∴∠OAH=∠OCM∵∠AOH=∠COM∴△AOH≌△COM(ASA)∴OH=OM∴△AO

如图,在正方形ABCD中,E是对角线上一点,CE=CD,EF⊥AC,交AD与F,联结CF,求角DCF与角CFE

因为EF⊥AC角ADC是90º在RT三角形EFC与RT三角形FDC中CE=CDCF是公共边则RT三角形EFC≌RT三角形FDCEF=DF角DCF=角ECF因为ABCD是正方形,所以角ACD=