如图,点D,E,F分别在等边三角形ABC的边AB,BC,CA的延长线上

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 18:41:01
如图,点D,E,F分别在等边三角形ABC的边AB,BC,CA的延长线上
如图,在等边△ABC中,D,E分别是BC,AC上的点,且AE=CD,AD与BE相交于F,CF⊥BE,求AF:BF

过B作AD的垂线,垂足为K∵△ABC是等边三角形∴∠BAC=∠ACB=60°AB=AC=BC在△ABE和△ACD中AB=AC,∠BAE=∠ACD,AE=CD,∴△ABE全等于△ACD(SAS)∴AC=

如图,D、E、F分别是等边△ABC的边AB、BC、CA的中点,现沿着虚线折起,使A、B、C三点重合,折起后得到的空间图形

立方体中:正方体有6个面,圆锥有2个面,棱柱至少有5个面而只有棱锥有四个面.故选D.

如图,在等边△ABC中,点D、E分别在BC、AB上,AD与CE交于F,且BD=AE.则∠DFC=______度.

∵△ABC为等边三角形,∴∠BAC=∠B=∠ACB=60°,∴AB=BC=AC.在△ABD和△CAE中,∵BD=AE,∠ABD=∠CAE,AB=AC,∴△ABD≌△CAE,∴∠BAD=∠ACE,又∵∠

如图,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE交于点F.

(1)证明:∵△ABC是等边三角形,∴∠BAC=∠B=60°,AB=AC.又∵AE=BD,∴△AEC≌△BDA(SAS).∴AD=CE;(2)∵(1)△AEC≌△BDA,∴∠ACE=∠BAD,∴∠DF

如图,在等边△ABC中,点D.E分别在BE,AB上,且BD=AE,AD与CE交于F

(1)证明:因为△ABC是等边三角形,所以AB=BC=CA,∠BAC=∠ACB=∠ABC=60°在△ACE和△BAD中,AB=AC,∠BAC=∠ABC,BD=AE.所以△ACE≌△BAD(SAS)所以

已知如图在等边三角形abc中,过点a,b,c分别作ab,bc,ac的垂线,两两相交于点d,e,f.求证三角形def是等边

 再问:请问这样做可以不再问: 再答:差不多啊!可以啊!记得赏喔!谢!再问:嗯呐

如图,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F.求证△AEC≌△BDA

∵△ABC为等边三角形,所以AB=AC=BC,∴∠B=∠BAC=60°又在三角形BDA和三角形AEC中AB=AC,∠DBA=∠EAC,BD=AE,∴△BDA≌△AEC.再问:已知条件中没有∠DBA=∠

如图,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE交于点F

1、证明:∵等边△ABC∴AB=AC,∠ABC=∠BAC=60∵BD=AE∴△ABD≌△CAE(SAS)∴AD=CE∵△ABD≌△CAE∴∠BAD=∠CAE∴∠DFC=∠CAD+∠CAE=∠CAD+∠

如图,点D、E、F分别在等边△ABC的三边上,且AD=BE=CF.求证:△DEF是等边三角形.

∵△ABC为等边△∴AB=BC,∠B=∠C又∵AD=BE=CF∴AB-AD=BC-BE即BD=CE∴△BDE和△EFC全等∴DE=EF同理可证DE=DF∴△DEF是等边△

如图,D是等边△ABC外一点,DB=BC,∠BDC=120°,点E、F分别在AB、AC上.试说明:(1)AD是BC的垂直

D是等边三角形ABC外一点,DB=DC,角BDC=120度,点E,F分别在AB,AC上.三角形AEF的周长是BC长的证明题在这里写出来就有点麻烦,如果你上Q的话

已知:如图在等边△ABC中,点D,E分别在AB,AC上,且BD=AE,AD交CE于点F.求证:AD=CE;求∠DFC的度

∵△ABC是等边三角形∴AB=AC,∠B=∠BAC在△ABD和△CAE中AB=AC∠B=∠CABBD=AE∴△ABD≡△CAE(SAS)∴AD=CE

如图,三角形ABC是等边三角形,点D、E、F分别在AB、BC、CA的延长线上,且BD=CE=AF.三角形DEF也是等边三

证明:因为三角形ABC是等边三角形所以AB=BC=AC∠BAC=∠ABC=∠ACB=60°又因为BD=CE=AF所以AD=BE=FC,∠FAD=∠DBE=∠ECF=120°根据SAS,可以得出⊿FAD

如图,D是等边△ABC外一点,DB=DC,∠BDC=120o,点E、F分别在AB、AC上,求证若角edf=60°,则ef

将△DCF绕D点逆时针旋转120°,得到△DBG,且DC与DB重合又∠EBD+∠FDC=180°+180°-120°-60°=180°∴G,B,E三点共线∵△DCF≌△DBG∴DF=DG又∠EDG=1

已知;如图在等边三角形ABC中,过点A,B,C分别作AB、BC、AC的垂线,两两相交于点D,E,F.求证;△DEF是等边

证明:∵*ABC是等边三角形∴AC=AB,<CAB=<ACB=60度∵AC垂直于CD,BA垂直于AE∴<DCA=<EAB=90度∴<DAC=<ABE=30度在*DAC和*EBA中<DCA=<EAB(已

如图,在等边△ABC中,点D;E分别在边BC;AB上,且BD等于AE,AD与CE交于点F.问AD等于CE吗?为什么.

证明:因为△ABC为等边三角形,所以AB=AC,且角B=角BAC,又有已知可得BD=AE,所以由边角边可得△ABD全等于△CAE,又有全等三角形的定义可得AD=CE.接下来只要转化成数学语言就可以了.

如图,在等边△ABC中,D.E分别是BC.CA上的点,且满足CD=AE,AD.BE交于点F,BG⊥DF F

∵△ABC是等边三角形∴AB=AC,∠BAC=∠C=60°又∵CD=AE∴△BAE≌△ACD∴∠DAC=∠ABE又∵∠DAC+∠BAD=∠BAC=60°∴∠ABE+∠BAD=60°∴∠BFD=∠ABE

(2012•香坊区三模)如图,在等边△ABC中,点D、E分别为AB、AC边的中点,点F为BC边上一点,CF=1,连接DF

连接DE,∵△ABC是等边三角形,∴AB=BC=AC,○B=∠C=∠BAC=60°,∵D、E分别为AB、AC中点,∴AD12AB,AE=12AC,∴DE∥BC,AD=AE,∴△ADE是等边三角形,∴A

如图,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F.1.求AD=CE 2.求∠DFC

依题,∵△ABC为等边三角形∴∠A=∠B=∠C=60°AB=BC=AC在△ABD和△CAE中BD=AE∠ABD=∠CAEAB=AC∴△ABD≌△CAE∴∠BAD=∠ACE∴∠ACE+∠CAF=60°∴