如图,点cD在线段AB上,角A=角B,AE=3,AD=2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:35:52
∵点p在线段AB的垂直平分线上∴PA=PBRT△APC和RT△BPD中PA=PBAC=BD∴RT△APC≌RT△BPD(HL)∴PC=PD∴点P在线段CD的垂直平分线上
AC/AB=a/1AB/AC=1/a(AB-AC)/AC=(1-a)/aBC/AC=(1-a)/aAC/BC=a/(1-a)(AC+BC)/BC=(a+1-a)/(1-a)AB/BC=1/(1-a)B
证明:作AE⊥CD,交DC延长线于E∵点C在线段AB的垂直平分线上∴AC=BC∵∠ACB=90º∴∠CAB=∠CBA=45º∵CD//AB∴∠ECA=∠CAB=45º=∠
CD上PA+PB值固定为AB,在CD上时PC+PD最小
六条线段,AC,AD,AB,BC,BD,CD,和是40cm
如图,分别延长AE、BF交于点H.∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE,∴四边形EPFH为平行四边形,∴EF与HP互相平分.∵G为EF的中点,∴G也正好为PH
如图,分别延长AE、BF交于点H.∵∠A=∠FPB=60°,∴AH‖PF,∵∠B=∠EPA=60°,∴BH‖PE,∴四边形EPFH为平行四边形,∴EF与HP互相平分.∵G为EF的中点,∴G也好为PH中
设B(0,0),C(a,0),D(a,3),A(0,3)M(3,t),N(a-t,0),F(a-t,t(1-t/a))ABFE面积=3*(a-t)-1/2*(a-t)*t*(1-t/a)(蓝色)&nb
K存在最小值,这个题其实就是一个常规题型,当APD‘成一条直线的时候K最小.由题意得K=AP+PD’.通过计算得K=根号52
1.P在a外侧:∠APB=∠DBP-∠CAP2.P在b外侧:∠APB=∠CAP-∠DBP只要过点P作a、b的平行线就很清楚了
ac+ad+ab+cd+cb+db=ac+cb+ad+db+ab+cd=3ab+ab/3=3*12+12/3=40
根据题意,画出图形,∵点C在线段AB的垂直平分线上,∴AC=BC设AC=BC=2x,△ABC中,∠ACB=90°,∴∠BAC=∠ABC=45°,由勾股定理:∴AB²=(2x)²+(
(1)∵AB=20,CD=4,∴AC+DB=AB-CD=16.∵M、N分别是AC、BD的中点,∴MC=12AC,ND=12DB,∴MC+DN=12AC+12DB=12(AC+DB)=8,∴MN=MC+
PS:希望我的回答能够帮助你~请采纳是我对我的信任和肯定...
如图,分别延长AE、BF交于点H.∵∠A=∠FPB=60°,∴AH‖PF,∵∠B=∠EPA=60°,∴BH‖PE,∴四边形EPFH为平行四边形,∴EF与HP互相平分.∵G为EF的中点,∴G也好为PH中
首先确定G的轨迹是‖AB的一条线段过E、G、F作AB的垂线,垂足分别为H1,H2,H3设CP=x,AP=2+x,EH1=(2+x)/2*根号3再作EH4⊥FH3于H4H3H4=(2+x)/2*根号3P
∵AB∥CD∴∠A=∠C又∵AM=CNAB=CD∴△AMB≌△CND∴∠AMB=∠CND∵∠BMN+∠AMB=∠BNM+∠CND=180°∴∠BMN=∠BNM由△AMB≌△CND可知BM=DN又∵MN
添加条件∠ABE=∠ACDAE=AD∠ABE=∠ACD∠BAE=∠CAD角角边定理··所以全等△OBD=△OCE,因为三角形ABE全等于三角形ACD,所以∠B=∠CAB=AC因为AB=ACAE=AD所