如图,点B在线段AE上,∠CAE=∠DAE,∠CBE=∠DBC,试说明EC=ED
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 00:03:16
(1)△BPE与△CQP全等.(1分)∵点Q的运动速度与点P的运动速度相等,且t=2秒∴BP=CQ=2×2=4厘米(2分)∵AB=BC=10厘米,AE=4厘米,∴BE=CP=6厘米,∵四边形ABCD是
因为CD⊥CA,AE⊥CA,BD⊥BE所以角BCD=角EAB=角DBE=90°又因为角CBD+角ABE=角ABE+角AEB=90°所以角CBD=角AEB又因为BD=BE在三角形BCD和三角形ABE中,
证明:取AB中点D,连接CD.∵CA=CBDA=DBCD=CD∴△CAD全等于△CBD且∠CDA+∠CDB=180°∴∠CDA=∠CDB=90°故CD垂直平分AB∴C在线段AB的垂直平分线上
(1) B(12,0)直线AB: (2) 设P(a. ), △ PMN的边长= =-t+8 &n
因为,AE=DB,且BE为公共边.所以,AB=ED.因为在三角形ABC与三角形DEF中AC=DF,BC=EF,AB=ED.所以,三角形ABC全等于三角形DEF.所以,角A=角D.因为在三角形CAE与三
证明:延长CB,在延长线上找一点G使BG=DF易证△ADF≌△ABG即AF=AG,∠DAF=∠BAG又因∠BAE=∠EAF所以∠GAE=∠EAD=∠BEA即AF=AG=GE=BG+BE=DF+BE.
(1)证明:∵AD•AC=AE•AB,∴ADAB=AEAC,又∵∠DAB=∠EAC,∴△AEC∽△ADB; (2)∵△AEC∽△ADB,∴∠B=∠C,过点A作BD的垂线,垂足为F,则AF=A
证明:(1)∵AB=DB;∠ABE=∠DBC=120°;EB=CB.∴⊿ABE≌⊿DBC(SAS),AE=DC;∠BAE=∠BDC.∴点B到AE和DC的距离相等(全等三角形对应边上的高相等);则∠AO
证明:(1)∵△ACD和△BCE是等边三角形,∴AC=DC,CE=CB,∠DCA=60°,∠ECB=60°,∵∠DCA=∠ECB=60°,∴∠DCA+∠DCE=∠ECB+∠DCE,∠ACE=∠DCB,
(1)证明:如图,延长CB至点G,使得BG=DF,连接AG.因为ABCD是正方形,所以在Rt△ADF和Rt△ABG中,AD=AB,∠ADF=∠ABG=90°,DF=BG.∴Rt△ADF≌Rt△ABG(
已知点D,B在线段AE上,AD=BE,AC=DF,AC∥DF.△ABC和△DEF全等AB=DE角BAC=角EDFAC=DF所以△ABC全等于△DEF(边角边)
(1)AE⊥BE;(1分)∵EA、EB分别平分∠DAB和∠CBA,∴∠2=12∠DAB,∠3=12∠ABC,∵AD∥BC,∴∠DAB+∠ABC=180°,∴∠2+∠3=90°,∴∠AEB=90°,∴A
不是很清楚,保存之后应改可以看清楚.也可简化证明步骤:∵AD平分∠BAC,DB⊥AB,DC⊥AC∴DB=DC(角分线上的点到角的两边距离相等)∴D在BC中垂线上(到线段两段距离相等的点,在此线段的点中
证明:∵AD平分∠BAC且DB⊥ABDC⊥AC∴BD=CD∵AD=AD∴Rt△ABD≌Rt△ACD∴∠BDA=∠CDABD=CD∴AD平分等腰三角形BDC的顶角∴AD为等腰三角形BDC底边BC的垂直平
ABC是等腰三角形,AB=AC=4,且bd=cd=bc的一半=3ACE是等腰三角形,AC=CE=4,所以DE=DC+CE=3+4=7
证明:因为CD⊥CA,AE⊥CA,BD⊥BE所以角BCD=角EAB=角DBE=90°又因为角CBD+角ABE=角ABE+角AEB=90°所以角CBD=角AEB又因为BD=BE在三角形BCD和三角形AB
没有图啊……再问:再答: 渣像素,将就看吧。
也是39度,∵AB=CB,∠ABD=∠CBE=180°-60°=120°BD=BE∴△ABD≌△CBE∴∠BCE=∠BAD=39°
添加条件∠ABE=∠ACDAE=AD∠ABE=∠ACD∠BAE=∠CAD角角边定理··所以全等△OBD=△OCE,因为三角形ABE全等于三角形ACD,所以∠B=∠CAB=AC因为AB=ACAE=AD所