如图,点b在直线mn上,过ab的中点o作mn的平行线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:26:18
(1)l1,l2平行,所以角ACD+角CDB=180又根据三角形两角之和等于第三角补角α+β+180-γ=180γ=α+β(2)β=α+γ希望对你有帮助
:延长AB交MN于点P′,此时P′A-P′B=AB,由三角形三边关系可知AB>|PA-PB|,故当点P运动到P′点时|PA-PB|最大,作BE⊥AM,由勾股定理即可求出AB的长.延长AB交MN于点P′
很简单,但是有点绕弯.直角三角形POQ中,PO2=PQ2+OQ2,因为OQ=1,所以PQ2=OP2-1所以求得OP的最小值,即可.很简单,O作AB的垂线段最短,长度为2倍根号二所以PQ最短距离为2倍根
作CD‖AF∵EF‖MN∴CD‖MN∴∠FAC=∠ACD∠NBC=∠DCB∵∠ACB=∠ACD+∠DCB∴∠ACB=∠FAC+∠NBC点C不在EF与MN之间时,请直接写出∠FAC、∠NBC,∠ACB之
找到BC的中点H,连接MH,NH.如图:∵M,H为BE,BC的中点,∴MH∥EC,且MH=EC.∵N,H为CD,BC的中点,∴NH∥BD,且NH=BD.∵BD=CE,∴MH=NH.∴∠HMN=∠HNM
(1)有四对全等三角形,分别为①△AMO≌△CNO,②△OCF≌△OAE,③△AME≌△CNF,④△ABC≌△CDA;(2)证明:∵O为AC的中点,∴OA=OC,在△EAO和△FCO中∵AO=OC∠1
∠AEB的大小不变∵直线MN与直线PQ垂直相交于O∴∠AOB=90°∴∠OAB+∠OBA=90°∵AE、BE分别是∠BAO和∠ABO角的平分线∴∠BAE=1/2∠OAB,∠ABE=1/2∠ABO∴∠B
1,4对全等三角形2.证明:因为AO=CO因为OE=OF因为角AOE=角BOF所以三角形AOE全等三角形COF所以角EAO=角FCO同理可证:角BAC=角ACB所以角EAM=角BAC-角EAO=角AC
过B点做任意不与AB重合的直线交MN与点D然后根据直线截一组平行线的角的之间的关系自己去证明,这个很简单,自己动手试试
作ND⊥X轴交X轴于D点连AB.则S△AMN=AM×ND÷2∠ODN=90°.∵S△AMB=AM×OB÷2∴ND:OB=S△AMN:S△AMB=3/2.∵OB=4∴ND=6又∵OB=OA=4∠AOB=
AP=AQ.理由如下:如图,取BC的中点H,连接MH,NH.∵M,H为BE,BC的中点,∴MH∥EC,且MH=12EC.∵N,H为CD,BC的中点,∴NH∥BD,且NH=12BD.∵BD=CE,∴MH
(1)证明:∵CE平分∠BCO,CF平分∠DCO,∴∠OCE=∠BCE,∠OCF=∠DCF,∴∠ECF=12×180°=90°;(2)当点O运动到AC的中点时,四边形AECF是矩形.理由如下:∵MN∥
(1)CD⊥AB于D,垂足为D,AD=BD(即MN是AB的垂直平分线),则AC与BC的关系是.规律是:线段的垂直平分线上一点到线段两端点的距离相等.(2)因为,点N在线段AC的垂直平分线上,所以,NA
(1)有4对全等三角形.分别为△AMO≌△CNO,△OCF≌△OAE,△AME≌△CNF,△ABC≌△CDA;(2)证明:∵OA=OC,∠1=∠2,OE=OF,∴△OCF≌△OAE.∴∠EAO=∠FC
(1)证明:据题意得:PQ⊥AD,∵∠PBE+∠ABQ=180°-90°=90°,∠PBE+∠PEB=90°,∴∠ABQ=∠PEB.又∵∠BPE=∠AQB=90°,∴△PBE∽△QAB.(2)△PBE
首先AC、AD平分两角则∠CAD=∠CAB+∠DAB=1/2*180=90度CD平行MN则∠DCA=∠MAC=DAC同理∠CDA=∠DAN=∠DAB故OC=OD=OB=OA故三角形COA全等三角形DO
(1)证明:∵AB是⊙O的直径,∴∠ADB=∠ADC+∠CDB=90°,∵MN切⊙O于点B,∴∠ABN=∠ABC+∠CBN=90°,∴∠ADC+∠CDB=∠ABC+∠CBN;∵∠ADC=∠ABC,∴∠
很简单呀~作A点关于直线MN的对称点A'连接A'和B,A'B与MN的交点为P,则∠MPA'=∠NPB显然∠MPA=∠MPA'所以∠MPA=∠NPB
不一定平行,理由如下:分两种情况:①如图1,此时EB与AD平行;②如图2,此时EB与AD不平行.分两种情况:①如果∠EBM与∠A是一个平行四边形的一组对角,那么EB与AD平行;②如果∠EBM与①中的∠
(1)证明:在平行四边形ABCD中,AD∥BC,∴∠PDO=∠QBO.∵∠DOP=∠BOQ,DO=BO,∴△DOP≌△BOQ.∴PO=QO.(2分)同理MO=NO.∵∠PON=∠QOM,∴△PON≌△