如图,点A在半径为1且圆心在原点的圆上,且角AOx=45°

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:57:28
如图,点A在半径为1且圆心在原点的圆上,且角AOx=45°
已知,如图,在平面直角坐标系中,点A的坐标为(0,2),点C为以坐标原点O为圆心,根号3为半径圆O上的一点,且AC=1,

注意到顶点横坐标为抛物线与X轴交点横坐标之和的一半,设顶点为P,与x轴交于M(m,0)、N(n,0)(a〉b).则有PM=PN,所以MN为斜边.又:MN=2,所以m=n+2在有,因为PM=PN,三角形

如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交X轴于A、B两点.

A(1-√3,0),B(1+√3,0).设抛物线的解析式y=ax²+bx+c对称轴x=(x1+x2)/2=1,与园的焦点P(1,3)(另一交点舍去),a+b+c=3-b/2a=1,c/a=x

如图,在平面直角坐标系中,以点A(-1,0)为圆心,AO为半径的圆交x轴 负半轴于另一

(1)连接AF,圆心与切点所成半径垂直于切线,所以△AFC为直角三角形,角AFC为直角因为A点坐标为(-1,0)所以园A半径为1,所以AF的长度为1,根据勾股定理得AC为√5,C点坐标为(√5-1,0

30. 如图,在平面直角坐标系中,以点A(-1,0)为圆心,AO为半径的圆交x轴 负半轴于另一

(1)连接AF,因为FC为圆的切线,所以AF垂直FC,AF=OA=1,CF=2,所以根据勾股定理得AC=根号5,所以OC=根号5-1,C点坐标为(根号5-1,0)(2)因为EF和EO都为圆的切线,所以

如图,在矩形ABCD中,AB=a,BC=b,点E在AB上,且AE=c,以E为圆心,以AE为半径画弧,交CD于点F;

连接HG、AF.∵∠GHB=∠FAB∴AF∥HG∵AG∥HF∴四边形AFHG为平行四边形∵可以将AF右边的阴影部分,平移到HG的左边,使其刚好凑成平行四边形AFGH∴阴影的面积就是平行四边形AFHG的

如图7,在平面直角坐标系中,点A的坐标为(0,-2),以点A为圆心,AO为半径画圆,直线Y=-

1.CE与圆有三种位置关系,相交,相切和相离2.当直线CE与与圆相切时,∵C为直线BC与Y轴的交点∴C(0,4),设直线CE的斜率为k那么直线CE的方程为y-4=kx即y=kx+4圆A的方程为x

如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交x轴于A,B两点,开口向下的抛物线经过点A,B,且其顶

(1)作CH⊥x轴,H为垂足,∵CH=1,半径CB=2,∵∠BCH=60°,∴∠ACB=120°.(2)∵CH=1,半径CB=2∴HB=3,故A(1-3,0),B(1+3,0).(3)由圆与抛物线的对

填空题,如图,在△ABC中,分别以点A,B为圆心,大于2分之1AB的长为半径画弧,

显然M和N是线段AB的垂直平分线所以D在垂直平分线上所以AD=BD所以AC+BC=AC+CD+BD=AC+CD+AD=10所以三角形ABC周长=AB+AC+BC=17

15.如图,一半径为R的圆盘上均匀分布着电荷量为Q的电荷,在垂直于圆盘且过圆心c的轴线上有a、 b、d三个点

积分来算,为了把二重的面积分简化为一重积分,首先根据对称性,d处的场强方向是沿着圆心O和d点连线向外.设圆盘的面电荷密度是s,有s=Q/πR^2考虑圆盘上的一个半径是在r,r+dr处的细环带,它的电量

如图,在边长为4 的正方形ABCD中,以点A为圆心,AB为半径画弧BD,再以点C为圆心,CB为半径画另一弧BD,求阴影

如图.敢问图在哪儿.如图,可知S阴影=S扇形BAD+S扇形BCD-S正方形ABCD     =1/4·π×4²+1/4·π×4²-

如图,在Rt△ABC中,∠B=90°,AB=1,BC=12,以点C为圆心,CB为半径的弧交CA于点D;以点A为圆心,AD

(1)在Rt△ABC中,由AB=1,BC=12,得AC=12+(12)2=52,∵以点C为圆心,CB为半径的弧交CA于点D;以点A为圆心,AD为半径的弧交AB于点E∴BC=CD,AE=AD,∴AE=A

如图,在平行四边形ABCD中,以A为圆心,以AB为半径做圆交

解题思路:要证明EF=FG,则要证明∠GAF=∠EAF,由题干条件能够证明之.解题过程:

(2012•金山区二模)如图,在平行四边形ABCD中,以点A为圆心,AB为半径的圆,交BC于点E.

(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠AEB=∠EAD,∵AB=AE(AB与AE为圆的半径),∴∠AEB=∠B,∴∠B=∠EAD,在△ABC和△EAD中,AE=AB∠B=∠

如图1,AD为圆心O的直径,B,C为圆心O上两点,点C在弧AB上,且弧AB=弧CD,过A点做圆心O的切线,交BD于延长线

(1)略(2)BE=BG+EG=BD+EF,理由是:设FD与AE交于点O,过O做OG⊥DE,∵∠AED=∠ADF,且∠ADF=∠AED∴∠AED=∠AED∴FE=EG又∵弧AB=弧CD∴∠DAB=∠A

如图1,AD为圆心O的直径,B,C为圆心O上两点,点C在弧AB上,且弧AB=弧CD,过A点做圆心O的切线,

(1)连接AC因弧AB=弧CD,则AB=CD,则∠ADB=∠DAC(相等弦对应圆心角相等)因∠ADB=∠DAC,∠DBA=∠ACD=90度(直径所对角为90度),AD=AD,则三角形DBA全等三角形A

如图,AP是圆心O的切线,A为切点,点B在圆心O上,且PA=PB,求证PB是圆心O的切线.

证明:连接OA,OB,OP.      点B在圆心O上,且PA=PB;