如图,点A,B,C,D在一条直线上,三角形ABF全等于
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:24:53
1.直线y=x+1与y=-3/4x+3交于点A,则y=x+1,y=-3/4x+3联立解得x=8/7,y=15/7所以A(8/7,15/7)直线y=x+1与y=-3/4x+3分别交X轴于点B和点C则B(
BC=BE+EC=CF+EC=EF又因为AB=DE,AC=DF所以三角形ABC与三角形DEF全等所以角A=角D
(1)△ABD与△CAE全等,在Rt△ABD与Rt△CAE中,∵AB=AC ,∠ABD=∠CAE,∠BDA=∠AEC=Rt∠,∴△ABD≌△CAE(AAS), (2)BD=DE+C
很容易证明这两个三角形全等.再问:怎么证再答:∵AE=CFAF=AE+EFCE=CF+EF∴AF=CE∵AD∥BC∴∠A=∠C(两直线平行,内错角相等)又∠B=∠D∴△ADF≌△CBE∴AD=CB(全
p点坐标是(5,-1),首先根据面积相等判断p点在x轴下方,画出三角形adp,已知A\B两点坐标直线L2的方程式可求出:Y=-X+4,.解L1、L2的二元一次方程求出C点坐标(2,2),利用三角形面积
证:∵DC∥AB∴∠A=∠C(两直线平行,内错角相等)已知AE=CF∵AF=AE+EFCE=CF+EF∴AF=CE(同角的等角相等)在△ABF与△CDE中∵{∠A=∠CAF=CE∠B=∠D∴△ABF全
AB=DE,AC=DF,BE=CF,BE+EC=CF+EC,所以BC=EF,△ABC≌△DEF,[SSS],∠A=∠D.
∵∠BAC=90°∴∠BAE+∠CAE=90°∵BD⊥AE,CE⊥AE∴∠ADB=∠AEC=90∴∠BAE+∠ABD=90∴∠ABD=∠CAE∵AB=AC∴△ABD≌△ACE(AAS)∴AE=BD,A
AB与CD不是平行的吗?是不是AB与OD交与E啊?1)易知Rt△OCD为等腰直角三角形soOD=CD=√2soD(√2,√2)2)设B(t,y)则t>0,t*y/2=1/2y=1/t则B(t,1/t)
现在准备在AD路段上建一个加油站M,要求使A,B,C,D各站到加油站M的总路程最短.加油站M应建在BC段的任意一点(包括点B和点C).
∵点A,B,C,D在一条直线上∴AC=AB+BC,BD=DC+BC又∵AB=CD∴AC=BD在△ACE与△DBF中,AE=DF,CE=BF,AC=BD∴△ACE≌△DBF∴∠E=∠F
给出电场强度B,再根据电流I,导线长度L,计算出安培力大小,由于电流方向相同,可知受力方向向外,夹角为60度,那么合力大小就为安培力的根号三倍
如果C、D不重合,那么平行.证明:∵EA⊥AD,FB⊥AD,∴EA‖FB∴∠E=∠BGC(俩直线平行,同位角相等)①又∵∠E=∠F②①+②∴∠F=∠BGC∴CE‖DF(同位角相等,俩直线平行)证讫.
∵折叠∴△BCE≌BDE∴∠CBE=∠DBE,∠BDE=∠C=90°若D为AB中点则ED为AB的垂直平分线∴EB=EA∴∠EBA=∠A∵∠C=90°∴∠EBA+∠CBE+∠A=90°∵∠EBA=∠CB
证明:∵AC∥DF,∴∠ACB=∠DFE,在△ABC和△DEF中,∠A=∠DAC=DF∠ACB=∠DFE,∴△ABC≌△DEF(ASA).
∵AB∥CD∴∠B=∠D∵BF=BE+EF,ED=EF+FD∴BE=FD在△ABE与△CFD中,∠B=∠D,BE=FD,∠A=∠C∴△ABE≌△CFD∴∠AEB=∠CFD∵∠AEB+∠AED=∠CFD
不能,若加条件:角ABC=60度,则可以使D,B,E在同一直线上.
两个条件都可以选择选择条件①证明:∵∠ACE=∠A+∠B,∠DFB=∠D+∠F,∠ACE=∠DFB∴∠A+∠B=∠D+∠F∵∠A=∠D∴∠B=∠F∴AB∥DE选择条件②证明:∵∠ACB+∠A+∠B=1
证明:∵AB//CE∴∠A=∠ACE(两直线平行,内错角相等)∠B=∠DCE(两直线平行,同位角相等)∵∠A=∠B∴∠ACE=∠DCE∴CE平分∠ACD