如图,点0为直线ab上一点,oc为一条射线,oe平分角aoc,of平分角boc

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:56:34
如图,点0为直线ab上一点,oc为一条射线,oe平分角aoc,of平分角boc
21.如图,已知圆O的直径AB=4,定直线L到圆心的距离为4,且直线L垂直于直线AB.点p时圆O上异于A,B的任意一点,

21.令圆心(0,0),A(-2,0),B(2,0),L:x=4,P(2cosz,2sinz)则AP与L交点为M[4,6sinz/(1+cosz)],BP与L的交点为N[4,2sinz/(cosz-1

如图,已知O为直线AB上一点,过点0向直线AB上方引三条射线OC,OD,OE,且OC平分角AOD,角2=3角1

已知O为直线AB上一点,过点O向直线AB上方引三条射线OC,OD,OE,且OC平分∠AOD,∠BOE=3∠DOE,∠COE=70°,求∠BOE的度数∵直线AB∴∠AOD+∠BOD=180∵OC平分∠A

如图,已知O为直线AB上一点,过点O向直线AB上方引三条射线OC,OD,OE,且OC平分∠AOD,

∠2与∠1是哪个?有图吗?再问:再答:����ocƽ�֡�AOD��AOC��50º���AOD��2��AOC��100º�ߡ�AOB��180º���BOD��180

如图,圆O的直径DF与弦AB交于点E,C为圆O外一点,CB⊥AB,G是直线CD上一点,∠ADG=∠ABD,CD是圆O的切

24.证:连结AF则∠ABD=∠F∠ADG=∠ABD∴∠ADG=∠F,∵DF为⊙O的直径∴∠DAF=90°∴∠ADF+∠F=90°∴∠ADG+∠ADF=∠FDG=90°∴∠DAF=∠CDE=90°∵C

如图1,点O为直线AB上一点,过点O作射线OC,将一直角三角形的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直

(1)因为OM平分∠BOC,而90°=1/2∠AOB=1/2(∠AOC+∠COB)=∠NOB+∠MOB所以∠NOB=1/2∠AOC所以ON平分∠AOC(2)6或24(3)不知道哦

已知:如图,点O为直线AB上一点,过点O在直线AB的同侧作射线OD、OC、OE,且OD是∠AOC的平分线,∠DOE=90

OE是∠BOC的平分线.理由如下:∵OD是∠AOC的平分线,∴∠AOD=∠COD,又∠DOE=90°,∴∠COD+∠EOC=90°,∴∠AOD+∠EOB=90°,∴∠EOB=∠EOC,∴OE是∠BOC

①如图1,已知AB是圆O的直径,点C是圆O上一点,连接BC,AC,过点C作直线CD⊥AB于点D,点E是AB上一点,直线C

话说第一题.很简单.相似三角形概念.(1)点A和点F同在圆上,且都对应弦BC,所以角A=角F,CD垂直于AB,那么角DCB=角A,所以角DCB=角F,因此,三角形FCB相似于三角形CBG,所以BC/B

如图,已知圆O的直径AB=4,定直线L到圆心的距离为4,且直线L垂直直线AB.点P是圆O上异于A,B的任意一点,直线PA

(Ⅰ)建立如图所示的直角坐标系,由于⊙O的方程为x2+y2=4,…(2分)直线L的方程为x=4,∵∠PAB=30°,∴点P的坐标为(1,√3),∴lAP:y=√3/3(x+2),lBP:y=-√3(x

如图 点o是直线ab上的一点,过点O作射线OC.

(1)已知∠AOC=60°,∴∠BOC=120°,又OM平分∠BOC,∠COM=12∠BOC=60°,∴∠CON=∠COM+90°=150°;(2)延长NO,∵∠BOC=120°∴∠AOC=60°,当

已知:如图,AB为⊙O的弦,过点O作AB的平行线,交⊙O于点C,直线OC上一点D满足∠D=∠ACB.

(1)直线BD与⊙O相切.证明:如图,连接OB.∵∠OCB=∠CBD+∠D,∠1=∠D,∴∠2=∠CBD,∵AB∥OC,∴∠2=∠A,∴∠A=∠CBD.∵OB=OC,∴∠BOC+2∠3=180°.∵∠

如图①,O为直线AB上一点,过点O向直线AB上方作射线OC,且∠AOC=30度,将一直角三角板的直角顶点放在点O处,一边

(1)∠BOC=150°,∠BOM=90°.由题意得t秒后∠BOM=75°,即直角尺转过15°,所以t=5s(2)因为直角尺转过15°,所以此时∠AOC=90°,所以ON平分∠AOC.(3)起先∠MO

如图,已知AB为⊙O的直径,点C为半圆上的三等分点,在直径AB所在的直线上找一点P,连接CP交⊙O于点Q,使PQ=OQ,

①当P在直线AB延长线上时,如图所示:连接OC,设∠CPO=x°,∵PQ=OQ,∴∠OQP=∠CPO=x°,∴∠CQO=2x°,∵OQ=OC,∴∠OCQ=∠CQO=2x°,∵点C为半圆上的三等分点,∴

如图,点O为直线AB上任意一点,OC为射线,OE平分∠AOC,OF平分∠BOC,

1.∠AOC+∠BOC=180°∵OE,OF平分两个角∴∠EOC=1/2∠BOC,∠FOC=1/2∠AOC∠EOC+∠FOC=1/2∠BOC+1/2∠AOC=90°∴OE⊥OF2.互补:∠AOF-∠F

如图,点O为直线AB上任意一点,OC为射线,OE平分∠AOC,OF平分∠BOC.

1)OE与OF垂直证:角COB为50°,OF平分角COB,故角COF为25°,同理可知角EOC为65°,即角EOF为90°,则OE与OF垂直2)仍成立证:∠COB为a,则∠COF为a/2°,∠AOC为

如图所示,O为直线AB上一点,

望采纳嘻嘻嘻60度首先∠boc是直角,∠bod:∠cod=4:1∠bod必须等于∠boc+∠cod即∠boc=3*∠cod=90°所以∠cod=30°所以∠bod=120°∠aod=180°-120°

如图1,点O为直线AB上一点,过点O作射线OC,将一直角三角形的直角顶点放在点O处

1)由角的平分线的定义和等角的余角相等求解;(2)由∠BOC=120°可得∠AOC=60°,则∠RON=30°,即旋转60°或240°时ON平分∠AOC,(3)因为∠MON=90°,∠AOC=60°,

如图,AB为⊙O的直径,C在⊙O上,并且OC⊥AB,P为⊙O上的一点,位于B、C之间,直线CP与AB相交于点Q,过点Q作

证明:如图,连接PB、BR,则∠APC=45°,∠APB=90°;故∠BPQ=180°-∠APC-∠APB=45°;又∵∠APB=90°=∠BQR,∴B、Q、R、P四点共圆;于是∠BRQ=∠BPQ=4