如图,海中有一小岛p,在距小岛24倍根号3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:37:05
船若继续向东行驶,则到P的距离为32*sin30°=16,小于16根号2.所以可能触礁.若要不触礁,则在航线上离P的距离至少为16根号2.以P为原点构建直角坐标系(所有数据约去16),A点坐标为(-1
设小船与小岛的最近距离为X船在行驶A海里后到达距离海岛最近的地方则tan25=A/X=0.467ttan55=(A+20)/X=1.427X=20.83>10所以船不会触礁
此题是求圆外切点.按目前方向行使,形成锐角30度的直角三角形,则P点到航行直线距离32*0.5=16海里,小于暗礁半径16^2,有危险假设调整方向,使航线与AP形成角度a,因为航线与暗礁圆相切所以si
角PAB=15度角PB直线北=30度可以由条件(在西偏北75°方向上,两小时后,轮船在B处测得小岛P在西偏北60°方向上,)得知,故角APB=30-15=15度故三角形PAB是PB=AB的等腰三角形可
AB=10海里,∠PAC=90°-75°=15°,∠PBC=30°,所以∠APB=30°-15°=15°,所以PB=AB=10海里,而PC=½AB=5海里>4.8海里,所以
洒满星星的星空:过小岛P点向航线AB的延长线作垂线交于D.AB=15海里×2=30海里∠BPD=180°-90°-30°=60°∠APB=180°-90°-15°-60°=15°=∠PAB∴PB=AB
∵∠PAB=30°sin∠PAB=二分之一=PB比AP当AP=16带入∴PB=8∵8倍根号2>8∴有触礁危险∵设PC为8倍根号2,PC:AP=二分之根号2∴∠PAC=45°,∠BAC=45-30=15
郭敦顒回答:∠MAP=90°-60°=30°,AP=32海里,⊙P的半径r=16√2,⊙P内存在暗礁,在⊙P的南部有切点B,切线为AB,则在Rt⊿AOB中,AP=32,PB=16√2,∠ABO=90°
依题意得:AB=15×(10-8)=30(海里).∵∠PAB=∠CAD-∠PAD=90°-75°=15°,∠PBC=30°,∴∠P=∠PBC-∠PAB=15°,∴∠P=∠PAB,∴PB=AB=30(海
有危险,理由如下:过点P作PD⊥AB,交AB的延长线与点D,如图所示:∵由题意可知:∠A=15°,∠PBD=30°,∴∠BPA=∠PBD-∠A=15°,即∠BPA=∠A,∴PB=AB=15×2=30(
过O作OC⊥AB,交AB的延长线于C.(1)在Rt△AOC中,∵∠AOC=60°∴cos60°=OCOA∴OC=12OA=12×60=30(海里)在Rt△OBC中,∵cos∠BOC=OCOB=3020
过P点作PC⊥AB,垂足为C.∵轮船的速度是15海里/时,A到B的时间是2小时,∴AB=15×2=30(海里).∵A处测得小岛P在西偏北75°方向上,两小时后,轮船在B处测小岛P在西偏北60°方向上,
角P+角A=30度角A=15度则角P=15度所以PB=AB=10*2=20海里因30度角所对边等于斜边一半所以P点到直线AB的距离为10海里因小岛周围18海里内有暗礁,大于10海里所以有触礁的危险.
第一题:(1)O到B的距离是20倍根号3(2)小岛B在港口O的东偏北30度的方向.第二题:(1)4-2倍根号3(2)约=5
AB=2*15=30km由图可知+倒角AB=BP=30km所以作高,由于30度P到AB距离为15km
最近会遇距离是15海里,(精确一点算,可能还稍多点)如果扣字眼,就没有危险,从航海实际来说,跟本没有安全系数,有危险.计算方法见图
作辅助线PD⊥AB于D;∵∠PBD=30°,∠PAB=15°,∠PBD=∠PAB+∠BPA∴∠BPA=15°即AB=PB=45(海里)PD=PB•sin30°=45×0.5=22.5>20,∴船不改变
会轮船在A点,小岛P在轮船的北偏西15°,即∠PAB=15°轮船航行到点B,小岛P此时在轮船的北偏西30°,即∠PBC=30°∵∠PAB(15°)+∠APB=∠PBC(30°)(三角形内角和=180°
首先自己画个坐标图看看,可求AB:9:45-8:00=1.75hAB=1.75*20=35海里角PAB=24°;因为小岛P在北偏西48度,所以角PBA=180-48=132°三角型知道了2个内角,所以