如图,正方形abcd和直角三角形abe
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:58:37
证明:∵四边形ABCD是正方形∴OD=OC,OD⊥OC∴∠COF=∠BOE=90°又∵OE=OF∴△COF≌△BOE(SAS)∴CF=BE
证明:连接BF交AE于点H(思路:我要证明OHBG是平行四边形则OG平行BHOH平行BH所在面ABEF)在三角形EAD中OH分别为DEAE的中点则OH平行且等于1/2AD(中位线定理)AD平行且等于2
(1)两个正方形重叠部分的面积保持不变;(2)重叠部分面积不变,总是等于正方形面积的14,即14×1×1=14,连接BE,CE,∵四边形ABCD和四边形EFGH都是正方形,∴EB=EC,∠EBM=∠E
第一问由全等易得ME=MF第二问由M点作MG丄AD,MH丄AB角GMH=360-90-90-角BAD=180-角BAD=角EMF角HMF+角EMH=角EMF=角GMH所以角HMF=角GMH-角EMH=
【推荐方法:】其实,连接CF,因为∠BFP=45°,∠ANP=45°,所以PF∥AN,△ANB和△ANF同底等高,面积相等,等于大正方形面积的一半.12×12÷2=144÷2=72平方厘米小正方形的边
设AE=3K,EC=4K,则AC=7k,在等腰RT三角形ADC中,解得AD,根据三角形AME相似于三角形DEC,求的比值
如图,首先熟悉勾股定理的几何证明.再延其思路找出图形裁剪线.
画展开图再问:再问:�ܰ��æô��再问:再问:��һ��?再答:�㻭��չ��ͼ�������ܹ��Ƴ�����再问:��һ��Ŷ��再答:�⣿再答:������再问:���黹Ҫ����ô��再问:
当OE垂直AB或OE过B点时,易知阴影部分的面积=1/4a².作为一般情况,因OE与OG的移动情况完全相同,必有OH=OK,HB=KC,又OB=OC,所以△OHB≌△OKC,故二者面积相等.
10×10÷2=100÷2=50(平方厘米);答:图中阴影(三角形BFD)部分的面积为50平方厘米.故答案为:50平方厘米.
楼主题目是不是错了应该是DG=BE吧.(1)证明如下四边形ABCD、AEFG都是正方形,所以DA=AB,AG=AE,
设ce长度为x.△CFI的面积为54.可算得CI=108/x.三角形dcf中的面积等于(二分之一DC乘EF)=二分之一CI乘以CD+(三角形cif的面积).(cd等于9,ef等于x.).等于二分之九乘
面积是2cm²再问:周长呢再答:周长是4cm
如果只允许绕一个固定轴旋转的话我只能写出4种1、在平面顺时针转动2、在平面逆时针转动3、向平面内侧转动4、向平面外侧转动
三角形ABC=三角形ADC,三角形AEF=三角形FGC..三角形AMQ=三角形CNP再问:就是不知道能不能不写过程,算了,反正也不想写==
解(1):因为ABCDAEFG是正方形所以∠BAD=∠EAG=90°AB=ADEA=EG因为∠BAD=∠BAE+∠EAD∠EAG=∠DAG+∠EAD所以∠1=∠2所以三角形BAE全等于三角形DAG所以
当MPG为等腰三角形时:(1)PM=PG,且MPG=90°时,显然PGCM是正方形,因为∠DBA=∠GEB=45°∴DB∥MEMN∥CB(同垂直于AB)∴PM=GB=GC=BE=AB/2=1/2(2)
左边梯形ABCG面积为3/4a^2右边三角形GCE面积1/8a^2三角形ABE面积3/4a^2所以,阴影面积为1/8a^2
(1)在正方形ABCD中,AD=DC,AE=DF,∠EAD=∠FDC,所以△EAD≌△FDC,故DE=CF,∴∠EDA=∠FCD,又∵∠DCF+∠DFC=90°,∴∠ADE+∠DFC=90°,∴∠DG