如图,正方形ABCD和正△AEF都内接于圆O,EF与BC,CD分别相交于点G
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 06:22:33
解∵在正方形ABCD中∠ABE=∠BCF=90°AB=BC,又∵AE=BF∴AE^2-AB^2=BF^2-BC^2,∴BE^2=CF^2∴BE=CF∴△ABE≌△BCF(SSS)∴∠BAG=∠CBH∵
∵AB=ADAE=AF∴Rt△ABE≌Rt△ADF(HL)∴BE=DF
证明:过D,E点分别作DH,EG垂直于AC,垂足是H,G∵ABCD是正方形,∴DH=1/2AC,又AC=AE∴DH=1/2AE∵DE//AC,所以DH=EG,即EG=1/2AE∴∠EAG=30.(在直
设BP与AE的交点为O∵AB=BC,∠ABE=∠CBE=45°,BE=BE∴△ABE≌△CBE∴∠BAE=∠BCE∵P是AD中点易证:△ABP≌△DCP∴∠ABP=∠DCP∵∠BCE+∠DCP=90°
(1)∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,∵AE=AF,∴Rt△ABE≌Rt△ADF,∴BE=DF(2)四边形AEMF是菱形.∵四边形ABCD是正方形,∴∠BCA=∠DCA=4
证明:∵正方形ABCD∴AB=AD,∠BAD=∠ABC=90∴∠BAF+∠AFB=90∵AE=BF∴△ABF≌△DAE(SAS)∴∠DEA=∠AFB∴∠BAF+∠DEA=90∴∠AGE=180-(∠B
题目有问题,假设F与D重合,那么,E与O重合,EO为0,FO是BD的一半,FO不等于EO.所以题中给出的命题必须限定点F的位置,即FC必须是个特殊值,但显然题目并没有给出这个条件.【美丽心情】团队,真
证明:过D,E点分别作DH,EG垂直于AC,垂足是H,G∵ABCD是正方形,∴DH=1/2AC,又AC=AE∴DH=1/2AE∵DE//AC,所以DH=EG,即EG=1/2AE∴∠EAG=30.(在直
有两种情况:1,三角形EAD相似于三角形NCM2,三角形EAD相似于三角形MCN先看第一种情况,AE=EB=1,AD=2,根据勾股定理,ED=根号5根据三角形相似定理,ED/MN=AD/MC可以得出C
证明:如图,过点E作AD的平行线分别交DM、DC的延长线于N、H,连接DF、FN.∴∠ADC=∠H,∠3=∠4.∵AM=ME,∠1=∠2,∴△AMD≌△EMN∴DM=NM,AD=EN.∵ABCD和CG
先证明△ACD与△BCE全等(SAS)(用两个等边三角形证),角CAD=角CBE角ACB=角DCE=60所以角PCQ=60BC=AC角CAP=角CBQ角PCA=角QCB=60所以△APC与△BQC全等
由题意,∵球O的表面积为12π,∴球的半径为3,∵两个正方形的顶点都在球O上,∴正方形的边长为2.取CD中点O,连接ON,则∵两个正方形ABCD和DCEF不在同一平面内,平面ABCD⊥平面DCEF,M
证明:延长CB,使BG=DF,连接AG因为四边形ABCD是正方形所以角BAD=角ABG=角D=90度AB=AD所以三角形ABG和三角形ADF全等(SAS)所以角GAB=角FAD因为角BAD=角BAF+
当MPG为等腰三角形时:(1)PM=PG,且MPG=90°时,显然PGCM是正方形,因为∠DBA=∠GEB=45°∴DB∥MEMN∥CB(同垂直于AB)∴PM=GB=GC=BE=AB/2=1/2(2)
∵AD∥BC∴∠DAF=∠AEB∵DF⊥AE∴∠AFD=∠EBA=90°∴△ADF∽△EBA∴AD/AE=DF/AB∵AD=AB=12∴AE=AD²/DF=12²/8=18
(1)∵ABCD是正方形∴∠B=∠D=90°AB=AD又∵AF=AE∴△ABE全等于△ADF∴BE=DF(2)∵AC是ABCD的对角线∴∠DCA=∠BCA∵BE=DF∴FC=EC又∵DC=DC∴△DC