如图,正方形ABCD.BEFG.HKPE放置在一起
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 11:11:49
设BM与AC交于点E∵BC平行AD∴△BEC相似△MEA∵正方形ABCD的边长为8厘米,M为AD边上的中点∴△BEC:△MEA=1:2△MEA,AM边的高为3分之8所以S△MEA=(3分之8)×4÷2
如图,连接BF,BD,∵四边形ABCD和BEFG均为正方形,∴BD=2AB,BF=2BG,∠ABD=∠CBF=45°,∴ABBG=BDBF,且∠ABG+∠GBD=∠DBF+∠GBD,即∠ABG=∠DB
如图,连BD、GE、FK,则DB∥GE∥FK,在梯形DBEG中,S△GED=S△GEB,同理可得,S△GEK=S△GEF,∴S△DEK=S△GED+S△GEK,=S△GEB+S△GEF,=S正方形BE
连接BD∵四边形ABCD和BEFG都是正方形∴∠ABD=∠AEG=45°∴BD‖GE∴△HDE的面积=△BHE的面积(同底等高)=1/4正方形BEFG的面积=25/4我改过来了
如图,正方形ABCD的面积为5,正方形BEFG的面积为3,那么三角形GCE的面积是(根号5-根号3)×根号3=根号15-3再问:˧�磬Ϊʲô�˸��3?再答:��̫���ˣ�����ˡ����5���
如图,连BD、GE、FK,则DB∥GE∥FK,在梯形DBEG中,S△GED=S△GEB,同理可得,S△GEK=S△GEF,∴S阴影=S△GED+S△GEK,=S△GEB+S△GEF,=S正方形BEFG
比较简单的方法:连接BD、GE、CF可得BD‖GE‖CF∴S△EDG=S△BEG,S△EGK=S△EGF(同底等高)∴S△EDG+S△EGK=S△BEG+S△EGF即S△DEK=S正方形BEFG=4&
连接BF∵四边形ABCD和四边形BEFG都是正方形∴∠EBF=∠BAC=45°∴AC‖BF∴S△AFC=S△ABC(同底等高)∵S△ABC=1/2*4*4=8∴S△ACF=8
(1)根据题意得:△CDE的面积为12a2;(2)根据题意得:△CDG的面积为12a(b-a)=12ab-12a2;(3)根据题意得:△CGE的面积为12b(b-a)=12b2-12ab;(4)根据题
如图示,正方形CEKH的面积等于正方形ABCD与BEFG的面积和:
答案是:(√5-1)/8?
三角形ABC=三角形ADC,三角形AEF=三角形FGC..三角形AMQ=三角形CNP再问:就是不知道能不能不写过程,算了,反正也不想写==
1),a*a/2(2),a*(b-a)/2(3).b*(b-a)/2(4),△DEG等于以上三个三角形之和,就是a*a/2+a*(b-a)/2+b*(b-a)/2
当MPG为等腰三角形时:(1)PM=PG,且MPG=90°时,显然PGCM是正方形,因为∠DBA=∠GEB=45°∴DB∥MEMN∥CB(同垂直于AB)∴PM=GB=GC=BE=AB/2=1/2(2)
如图,连BD、GE、FK,则DB∥GE∥FK,在梯形DBEG中,S△GED=S△GEB,同理可得,S△GEK=S△GEF,∴S△DEK=S△GED+S△GEK,=S△GEB+S△GEF,=S正方形BE
证明:我按一种图形来解,其实所有情况都不例外的,详见附图过G作GM⊥BC,过E作AB的垂线,交AB的延长线于点N,∵∠GBM=∠NBM-∠GBN=90°-∠GBN=∠GBE-∠GBN=∠NBE又∵∠G
1:根号2:1
因为AE平行于CD,所以E到CD的距离等于A到CD的距离,即a所以三角形CDE的面积等于1/2CD乘高,即1/2a*a三角形DEG的面积等于三角形CDE+CDG+CEG的面积和三角行CDG的面积等于1