如图,正三角形中,d,e分别为bc,ac边上一点,∠ade=60°
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 18:00:11
S阴影=SΔABC-S半圆=√3/4×2^2-1/2π×1^2=√3-1/21π.再问:如图,正三角形ABC的边长为a,D、E、F分别为BC、CA、AB的中点,以A、B、C三点为圆心,a/2长为半径作
法一:连接CG交DE于点H,∵DE是△ABC的中位线,∴DE∥AB.在△ACG中,D是AC的中点,且DH∥AG,∴H为CG的中点.∴FH是△SCG的中位线,∴FH∥SG.又SG⊄平面DEF
∵D、E、F分别为BC、CA、AB的中点,∴DE∥AB,DE=12AB,AF=BF=12AB,∴DE=AF,DE∥AF,∴四边形AFED是平行四边形,同理:四边形EFBD、EFDC是平行四边形,∵E是
连接AD,则AD垂直于BC.AD=2分之根号3,AE=2分之A所以S阴影=S三角形ABC-3S扇形AEF=[(2倍根号3-兀)/8]乘a^
二分之根号三axa/2-a/2xa/2πx1/2=八分之a的平方乘以(二倍根号三减π)
√3/4a²-1/2π×﹙a/2﹚²=﹙2√3-π﹚a²/8.
△GAD∽△DBE∽△ECH∵∠ADG+∠FDE+∠BDE=180°∠ADG+∠DAG+∠DGA=180°而∠FDE=∠DAG=60°∴∠BDE=∠DGA而∠B=∠A=60°∴△GAD∽△DBE又∵∠
△ECH,△GFH,△GAD均与△DBE相似,任选一对即可.如选△GAD证明如下:证明:∵△ABC与△EFD均为等边三角形,∴∠A=∠B=60°又∵∠BDG=∠A+∠AGD,即∠BDE+60°=∠AG
角AGD=角FGH,角GFH=角DAG=60度,所以角GHF=角ADG即ADG与GFH相似又角ADG+角BDE=120度,角FGH+角GHF=120,所以角BDE=FGH即证明了BDE与AGD,GFH
连接BN,CM∵等边△ACN,等边△ABM∴AB=AM,AC=AN∠CAN=∠BAM=60°∴∠CAN+∠BAC=∠BAM+∠BAC即∠BAN=∠CAM∴△BAN≌△MAC∴BN=CM又∵BN=2EF
“e,f,g分别为BD,AD中点”有三个点怎么只给两条边?题目写清楚再问:噢不好意思少打了一条边是E、F、G分别为DB、DC、AD的中点再答:EF和BC平行,BC属于面VBC,所以EF平行于面vbc因
证明:作EG//ABEG//DBEG:DB=EF:DF..(1)又EG//ABEG:AB=CE:AC因BD=CEEG:DB=AB:AC..(2)由(1)(2)得AB:AC=EF:DF
△BDE∽△AGD证明∵△ABC和△FDE都是等边三角形∴∠B=∠A=60°,∠FDE=60°∴∠BDE+∠BED=∠ADG+∠BDE=120°∴∠BED=∠ADG∴△BDE∽△AGD
阴影部分的面积=△ABC面积-3扇形面积=△ABC面积-半圆面积=(根号3/4-π/8)*a^2
三角形面积减去三个扇形的面积因为是正三角形,所以三个角都是60度,每个扇形都是60/360=1/6个圆的面积三个扇形总面积就是一个半圆的面积,圆的半径就是a/2,总面积π*(a/2)*(a/2)/8=
证明:∵△ABC为正三角形,∴∠A=∠C=60°,BC=AB,∵AE=BE,∴CB=2AE,∵ADAC=13,∴CD=2AD,∴ADCB=AECB=12,而∠A=∠C,∴△AED∽△CBD.
1)180-60=∠ABD+∠ADB=180-∠BDE=∠CED+∠ADB=180-∠C=∠DEC+∠CDE所以:∠DEC=∠BDA2)∠BDE=∠BDE,∠BDE=∠C=60所以:△BDE≌△BCD
∠DEC=∠ADE+∠DAE=60+∠DAE∠BDA=∠DAE+∠C=60+∠DAE∠C=∠B三角形ABD和三角形DEC相似根据相似关系AB:DC=BD:EC即4:x=4-x:4-y则y与x的函数关系
(1)正三角形ABC中∠AFB的度数为60°(△BCD≌△AEB(SAS),∠EAB+∠D=60°,又∵∠BAC=60°,∴∠AFB=60°)正四边形ABCM中∠AFB的度数为90°(同理,360°减
(1)∵在△BEF中,∠AFB是外角,∴∠AFB=∠AEB+∠FEB∵∠FBE=∠CBD (对顶角);∠FEB=∠BDC (已知条件有△ABE≌△BCD)∵在△BCD中,∠