如图,抛物线y方=8x得焦点为f,准线与x轴
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 20:47:31
设A(x1,y1),B(x2,y2),C(x3,y3)F(1,0)向量FA+向量FB+向量FC=(x1+x2+x3-3,y1+y2+y3)=(0,0)所以x1+x2+x3-3=0,x1+x2+x3=3
抛物线X²=4y即y=1/4x²F(0,1)求导得y'=1/2x那么PQ的斜率k=1/2x0PQ:y-y0=1/2x0(x-x0)令x=0得y=y0-1/2x²0=-y0
全都是公式离心率e=c/a=1/2有2c=a--------------①抛物线的焦点是(p/2,0)即(2,0)----------②标准方程就是y方=2px说明焦点在x轴上,m>n椭圆焦点为(-c
二者相切抛物线:y^2=4x因此,焦点为F=(1,0)设A=(x0,y0)那么,圆的半径r=√[(x0-1)^2+(y0)^2]=√[(x0-1)^2+4x0]=(x0+1)因此,B=(1-r,0)=
x²=-y/2=-2py,p=1/4,开口向下,焦点(0,-1/8)左右上y²=-2x=-2px,p=1,开口向左,焦点(-1/2,0)y²=12x=2px,p=6,开口
y²=8x,焦点F(2,0),准线为x=-2又k=-1,所以,AB的方程为:y=-(x-2),即:y=-x+2设A(x1,y1),B(x2,y2),分别过A,B做准线的垂线AC,BDAB=A
已知抛物线的方程为4x-y²=0,求此抛物线的焦点坐标和准线方程y²=4x;2p=4,p=2,故焦点F(1,0);准线:x=-1.
4x-y²=0即标准方程为y²=4x根据抛物线的标准方程y²=2px可以得到2p=4故p=2抛物线的焦点(p/2,0)所以抛物线的焦点为(1,0)
设A(x1,y1),B(x2,y2),抛物线y^2=8x焦点F(2,0),准线l:x=-2分别过A,B做AA'⊥l,BB'⊥l,垂足分别为A',B'根据抛物线定义:|BF|=|BB'|=x1+2,|A
过M作MN//x轴交准线x=-2于N则:MF=MN所以,MP+MF=MP+MN≥PN所以,P、M、N三点共线时,MP+MF值最小所以,M点纵坐标=P点纵坐标=-1M点横坐标=(-1)^2/8=1/8即
令过焦点的直线为y=k(x-1)(因为焦点为(1,0))代入抛物线方程,化简,得k^2*x^2-(2k^2+4)x+k^2=0设弦中点为(x,y)则x=(x1+x2)/2=1+2/k^2(利用根与系数
第一问设直线方程为y=k(x+1)-2与抛物线联立,消y让△=0,求出k=(-1±√3)/4由第一问求出的AB方程与准线方程联立求出C坐标,F(0,2),M(-1,-2),设圆的一般方程带点求解这两个
这道题你给Y=8t,两边同时平方,然后和X=8t平方联立消去t平方就可以啦.
设抛物线方程为y^2=mx,将y=2x+1代入得(2x+1)^2=mx,化简得4x^2+(4-m)x+1=0,设直线与抛物线交于A(x1,y1),B(x2,y2),则x1+x2=(m-4)/4,x1*
答案是8吧答案补充设斜率为k,则k=tanaF(2,0)m:y=k(x-2);和抛物线方程联立得k^2*x^2-(4k^2+8)x+4k^2=0x1+x2=(4k^2+8)/k^2;y1+y2=(x1
y^2=8x2p=8,p/2=2,F(2,0)准线l:x=-2,xA=-2-√3(xA-2)=yAyA=4√3yP=yA=4√3)xP=yP^2/8=(48)/8=6|PF|=√[yP^2+(xP-x
双曲线顶点是(+-2根号2,0),所以要求的抛物线是y^2=8根号2x,或y^2=-8根号2x
焦点:(5/2,0)准线:x=-5/2故距离为5/2+5/2=5
y=4x^2的焦点坐标:(0,1/16)不好意思,刚才写错了,标准方程应该是:x^2=2py标准方程:x^2=2py,焦点坐标(0,p/2)x^2=y/4=2*1/8*y所以p=1/8即焦点坐标是:(