如图,抛物线y=-x² 4ax-3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:40:24
答:抛物线开口向上,a>0抛物线y=ax^2+bx+c的对称轴x=-b/(2a)=1,b=-2a0,3a+c>0所以:(a+c)^2-b^2=(a+c)^2-4a^2=(a+c-2a)(a+c+2a)
解1):把x=4,y=5代入y=ax²-5ax+4a得:4=25a-25a+4a4a=4a=1所以抛物线的解析式是y=x²-5x+4,化成顶点式:y=x²-5x+4y=x
1)有题意得:c=-69a-12-6=-9解得a=1所以y=x²-4x-62)对称轴为x=2当x=2是y=-10所以顶点为(2,-10)3)由题意得Q(4-m,m)所以m2-4m-6=mm=
问题补充:如图,抛物线y=ax^2+bx+c与x轴的一个交点A在点(-2,0)和(-1,0)之间(包括这两点),顶点C是矩形DEFG上(包括边界和内部)的一个动点,则a的取值范围a的取值范围是-0.7
抛物线x轴于A(-1,0),B(4,0)两点,可以表达为y=a(x+1)(x-4)=ax²-3ax-4a-4a=2a=-1/2y=-(x+1)(x-4)/2其余题目不清楚,没法做再问:再答:
由抛物线方程可知,抛物线对称轴为x=-(-5a)/2a=5/2C坐标为(0,4)因为BC‖x轴,且B、C均在抛物线上,所以B、C两点关于x=5/2对称,所以B点坐标为(5,4)AC=BC=5三角形OA
1代入AC点坐标可得a=﹣1b=3∴y=﹣x+3x+42令y=0得B(4,0)BC::y=4-xD在抛物线上,且m>0所以D(3,4)∴对称点(0,1)3根据夹角公式知BP直线斜率为﹣3/5所以BP:
答:抛物线方程y=-ax^2+3ax+2=-a(x-3/2)^2+2+9a/4所以抛物线对称轴x=3/2,故点C一定在对称轴的右侧.令x=0,y=2,所以点A(0,2)令y=-ax^2+3ax+2=0
写大概思路行吗?4题都要写?再问:第四题再答:ED的长度为Y,可是DE怎么表示?不妨看成ED=EN-DN,ON一段是X也是E点的横坐标。先看EN是在一元二次函数上的一点,那我可以带进函数里,当ON为X
抛物线y=ax²向右平移1个单位,向下平移4个单位,得y=(x-h)²+k则h=1,k=-4所以新抛物线:y=(x-1)²-4,顶点D(1,-4)其与x轴的交点为:0=(
选A由对称轴x=2可知,-b/2a=2得到a=-b/4又因为交点落在(-1,0)中间,代入得c>0,a-b+c
设,A(x1,y1)p是A,B中点,B(0,1)x1+xB=2xp.y1+yB=2yp.得x1=2,y1=5,由B点坐标代入y=ax^2+n(a
解题思路:分析抛物线过两点,由待定系数求出抛物线解析式;根据D、E中点坐标在直线BC上,求出D点关于直线BC对称点的坐标;有两种方法:法一作辅助线PF⊥AB于F,DE⊥BC于E,根据几何关系,先求出t
(1)B(0,4),c=4过A(4,0):16a+4=0,a=-1/4(2)AC=OC,C在OA的中垂线x=2上,x=2,y=(-1/4)*4+4=3C(2,3)AC:(y-0)/(3-0)=(x-4
(1)令y=0,得-x2+x+4=0,即x2-2x-8=0;解得x=-2,x=4;所以A(4,0);令x=0,得y=4,所以B(0,4);设直线AB的解析式为y=kx+b,则有:4k+b=0,b=4解
(△ABG+△BCD+四边形OABC)面积对称与四边形ODEF面积所以说△ABG+△BCD面积=10-6=4
A(1,0)Q(X,X^2-4X+3)P(1,M)因为PQ⊥AQ,所以(2-x)*(x-1)=-(m-x^2+4x-3)*(x^2-4x+3)也就是两个直线斜率相乘为负一整理一下就得m=(x-2)/(
(1)对称轴方程公式:x=-b/2a=5a/2a=5/2,(2)因为截距(c)=4,所以C点坐标为(0,4),BC=5,所以B点坐标为(5,4).AC=BC=5,CO=4,所以AO=3,A点坐标为(-
y=ax^2-2ax-3ay=a(x-3)(x+1)当y=0时x=3,x=-1A(-1,0)B(3,0)(2)与y轴交于点P(0,m)m=-3a顶点坐标(1,-4a)顶点在x轴与直线EF之间(不在EF