如图,扇形OAB的圆心角为60°,半径为1,将它向右滚动到扇形

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 13:38:17
如图,扇形OAB的圆心角为60°,半径为1,将它向右滚动到扇形
如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,连接AC,BD.

(1)证明:∵∠AOB=∠COD=90°,∴∠AOC+∠AOD=∠BOD+∠AOD;∴∠AOC=∠BOD;在△AOC和△BOD中,∵OA=OB∠AOC=∠BODCO=DO,∴△AOC≌△BOD(SAS

如图,扇形OAB的圆心角为90°,分别以OA、OB为直径在扇形内作半圆,P和Q分别表示两个阴影部分,试判定P与Q面积的大

∵扇形OAB的圆心角为90°,假设扇形半径为a,∴扇形面积为:90×π×a2360=πa24,半圆面积为:12×π×(a2)2=πa28,∴SQ+SM=SM+SP=πa28,∴SQ=SP,即P与Q面积

扇形OAB的圆心角为60度,面积为6π,圆P与扇形的半径OA OB及弧AB都相切,则圆P的半径

60πr²/360=6πr=6OA=OB=6△OAB为正三角形圆P半径R=3/√3=√3再问:答案不对答案是2再答:如图∵∠AOB=60°∴∠AOP=30°∴2R=6-RR=2

如图扇形OAB的圆心角为90,半径为R,以OA,OB为直径在扇形内做半圆,2和4分别表示两部分面积

解设扇形边长为2xs1加s2=s2加s3=x丌平方.所以s1=s3=x丌平方-s2而扇形面积为2x丌平方=s1加s2加s3加s4=s1加2乘以s2加s3所以2等于4

如图:扇形OAB的圆心角∠AOB=120°,半径OA=6cm,

(1)如图所示:(2)扇形的圆心角是120°,半径为6cm,则扇形的弧长是:nπr180=120•π•6180=4π则圆锥的底面周长等于侧面展开图的扇形弧长是4π,设圆锥的底面半径是r,则2πr=4π

如图,半径为1cm,圆心角为90度的扇形oab中,分别以oa,ob为直径作半圆,则图中阴影部分面积为

该图中的弦AB外侧的两个小阴影圆弧与O点附近的空白圆弧的面积相等(可以用全等证明),那么把阴影的圆弧移动到空白处,则可获得一个完整的等腰直角三角形阴影,所以该图中的阴影部分面积S=1*1*1/2=1/

如图,扇形OAB的圆心角是90°,分别以OA、OB为直径在扇形内作半圆,则S1、S2两部分图形面积的大小关系是什么

如图s1+s2+s3+s4=R的平方*3.14/4=x/4s2+s3=(1/2*R)的平方*3.14/2=R的平方*3.14/8=x/8s1+s4=x/4-x/8=x/8s2+s3=s1+s4因s3=

如图,扇形OAB的圆心角是90°,分别以OA、OB为直径在扇形内作半圆,则 两部分图形面积的大小关系是什么?

s1=s2;靠AO边那个半圆除s1的面积,记s3,靠OB记s4,则s1+s2+s3+s4=AOB=(1/4)M.M大圆面积s1+s2=s1+s3=(1/2)*(1/4)M,即s1+s2+s1+s3=(

如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连结AC、BD,则

S⊿OAC=S⊿OBD(旋转90°重合)阴影面积=OAB+OBD-OAC-OCD=OAB-OCD=(9π-π)/4=2π(面积单位)

如图扇形OAB的圆心角是扇形OCD的三倍,而扇形OCD的半径是扇形OAB的两倍,若∠AOB=90°,OAECDFBO围成

设OA=r,S总=20=S(OAB)+S(OCD)-S(OEF)=1/4*3.14*r*r+1/12*3.14*(2r)*(2r)-1/12*3.14*r*r=1/2*3.14*r*r所以r=3.57

如图,扇形OAB的圆心角是90°,分别以OA,OB为直径在扇形内作半圆,则S1,S2两部分图形的面积大小关系是什

相等再答:设左上的空白面积为a,S总表示图形的总面积,S1表示左下阴影的面积,S2表示右上阴影,则a+S1=半圆的面积=S总÷2,a+S2=S总减去半圆面积=S总÷2

如图,圆心角都是90°的扇形OAB于扇形OCD叠放在一起,连接AC,BD,OA=3,OC=1,求阴影部分的面积

是求曲边四边形ABDC的面积吧?试解如下,s扇形OAB=90π×3²/360=9π/4.s扇形OCD=90π×1/360=π/4,所以s阴影=s扇形OAB-s扇形PCD=9π/4-π/4=2

如图,OB把半径为6厘米,圆心角为90°的扇形分成两部分,扇形OBC的面积是扇形OAB的2倍,ODBE是长方形,问甲比

图呢再问:图规格不对,我口述:一个¼的扇形,OB是长方形的对角线,也是将扇形分为两部分的线(一部分是三分之二,一部分是三分之一)三分之二的部分,也就是OBC,包括阴影甲和一半的长方形;三

如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,连接AC,BD.

(1)∵∠COD=∠AOB=90°∴∠AOC=∠BOD∵AO=BOCO=DO∴△AOC≌△BOD∴AC=BD(2)把△AOC内的阴影部分旋转到△BOD内,阴影部分就是一个扇环.则:阴影面积=扇形ABO

如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连接AC、BD,则图中阴影部分的面积为

由图可知,将△OAC顺时针旋转90°后可与△ODB重合,∴S△OAC=S△OBD;因此S阴影=S扇形OAB+S△OBD-S△OAC-S扇形OCD=S扇形OAB-S扇形OCD=14π×(9-1)=2π.

如下图扇形OAB和扇形OCD的圆心角都是直角,(

你等下、我打个草稿再问:好的再答:∵

如图,扇形OAB的圆心角为90°,分别以OA,OB为直径在扇形内作半圆,P和Q分别表示两个阴影部分的面积,那么P和Q的大

∵扇形OAB的圆心角为90°,假设扇形半径为a,∴扇形面积为:90×π×a2360=πa24,半圆面积为:12×π×(a2)2=πa28,∴SQ+SM=SM+SP=πa28,∴SQ=SP,即P=Q,故