如图,已知直线y=4分之1于双曲线y=x分之k

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 10:14:57
如图,已知直线y=4分之1于双曲线y=x分之k
初三数学题如图,已知抛物线y=2分之1x平方+mx+n(n不等于0)与直线y=x交于A.B两点,与y轴交与点C,OA=O

BC‖x轴.x=0,OC=-n-n=-根号下(-2n),解得n=-2抛物线的解析式为:y=1/2x2+x-2(2)DE=根号2,点D的横坐标为x,(点E在点D的上方),因此D(x,x)E(x+1,x+

如图,已知直线y=二分之一x与双曲线y=x分之k(k>0)交于A,B两点,且A点的横坐标4……

将点A(4,y)代入y=1/2x得y=2,再将y=2代入y=k/x得k=2x,把点A(4,y)代入k=2x得:K=8∴y=8/x∴s=(m-4)*2*1/2=m-4

如图,已知直线Y=负2X+B与双曲线Y=X分之K(K>0且K≠2)相交于第一象限内的两点P(1,K),Q( B-2/2,

⑴直线Y=-2X+B过(1,K),∴K=-2+B,B=K+2,Q的横坐标:(B-2)/2=K/2,Q的纵坐标:Y=K÷(K/2)=2,∴Q(K/2,2);⑵题目意义不明,可得:B(1,2),PB=|K

八上数学几何题:如图,已知直线y=二分之一x与双曲线y=x分之k交于点A、B,且点A的横坐标为4.(1)求K的值

(1)把x=4代入直线方程,得y=2,根据A、B关于原点对称,可知A(4,2),B(-4,-2),k=8(2)因为点D到x轴的距离为4,且不能与A重合,所以D点纵坐标为-4,设P点坐标(0,b)则△A

已知:如图,直线y=-x+4与x轴、y轴分别交于A、B两点.

y=-x+4y=k/x(k≠0)x^2-4x+k=0△=04k=16,k=4,y=4/xy=-x+4,D点坐标:(2,2)2)四边形OEDF的面积=2*2=43)②(AE^2)+(BF^2)=(EF^

如图,已知抛物线y=4分之1x的平方+1,直线y=kx+b经过点B(0,2)

(1)因为直线y=kx+b经过点B(0,2)所以将点B(0,2)代入直线y=kx+b有0+b=2b=2(2)因为“将直线y=kx+b绕着点B旋转到与x轴平行的位置”所以斜率k=0,直线y=kx+2变成

如图,已知直线y=-3分之4x+3与x轴、y轴分别交于点A、B,线段AB为直角边在第一象限内作等腰Rt△ABC,交BAC

1.当x为0时,y等于3,当y等于0时,x等于4,所以B点为(0,3),面积为3*4/2为6.2.A点为(4,0)AB长度为5,因为AB与AC垂直,所以k1和K2相乘为-1等处AC的k为4,过A点,所

如图,已知直线y=-1/2x与抛物线y=-1/4x²+6交于A、B两点

再问:第三问的P点是怎么求出来的啊,那个算的过程我不太懂,不好意思·····再答:刚看见当时写错了可以这么说,AB的长已经确定了,我们把AB当做底,只要求出在AB上的高,就可以求出面积了,现在要求面积

如图,已知直线y=kx+b的图像与反比例函数y=x分之k的图像交于A(2,m)B(-4,n) kx+b>x分之k的解集

由题意得m=-4n=2所以A(2,-4)B(-4,2)代入得2k+b=-4-4k+b=2解k=-1b=-2所以kx+b>k/x得-x-2>-1/xx+2<1/x1、当x>0x²+2x-1<0

如图,直线y=3x-3和直线y=-2分之1x-4分别交x轴于点A,B

(2)q(2,3).ac=ap=根号10.过点p做x轴垂线,垂足为m,ph=3,三角形acg全等于三角形pam,所以ap/ac=pm/ag,所以ag=3,cg=1,同理,eh=6,所以cg+eh=7(

如图,直线y=-4分之3x+6交x,y轴于点A,B,直线y=4分之3x-2交y轴于C点,两直线相交于点(1)求两直线交点

解方程组y=-4分之3x+6y=4分之3x-2得x=16/3,y=2交点P的坐标(3分之16,2)直线y=4分之3x-2交x轴于(8/3,0﹚S三角形pcA=½×﹙8-8/3﹚×2+

如图,已知双曲线y1=x分之m与直线y2=kx+b相交于点A(1,5)和B(-5,n)若直线与y轴交点为C,双曲线上是否

把A(1,5)代入y=m/x,得m=5,把B(-5,n)代入y=5/x,得n=-1,把A(1,5)和B(-5,-1)代入y=kx+b,得k+b=5-5k+b=-1解得k=1,b=4,得直线的解析式当X

如图,已知直线y=kx+m(m>0),经过点C(8分之3m,4),分别交x轴,y轴于A,B两点

3mk/8+m=4B(0,m)  A(-m/k,0)|m/k}=|3m/4|k1=4/3,m=8/3,C(1,4)k2=-4/3,m=8,C(3,4)如图所示,我给出了两种情况下的

如图,已知直线y=kx+m(m>0),经过点C(8分之3m,4),分别交x轴,y轴于A,B两点 .

且OA=4分之3OB,以AC为边作菱形ACED,且D点在x轴的正半轴上,E点在第一象限,CF为菱形AD边上的高确定K,M的值求出点E的坐标过点F的一条射线将菱形ACED的面积分成1比5两部分,交菱形A

已知:如图,直线y=-x+4与x轴、y轴分别交于A、B两点.(1)若双曲线y=k/x(k≠0)与直线y=-x+4在第一象

1(y=-x+4与y=k/x只交于D,y=k/x关于y=x对称,所以D也在y=x上,否则y=-x+4与y=k/x没有交点或有2个交点)y=-x+4与y=x交于D,y=-x+4y=xDy=2,Dx=2y

已知如图直线y=-根号3x+4与x轴交于点A,与直线y=-根号3x相交于点P

直线y=-根号3x+4与直线y=-根号3x是平行线,不可能相交,请改正!

如图,已知直线y=2分之1x与双曲线y=x分之k(k>0)交于A.B两点,且点A的横坐标是4

(1)y=x/2与y=k/x联立方程组,求得交点(根号2k,二分之根号2k),(负根号2k,负二分之根号2k).已知A点横坐标为4,则根号2k为4,所以k=8.(2)由(1)得,k=8,由已知C点纵坐

已知:如图,抛物线y=负四分之三x的平方+3与x轴交于点A,点B,与直线y=负四分之三x+b相交与点B,点C,直线

由题可知:B点的坐标为(2,0),则直线的解析式为:Y=-3/4X+3/2,抛物线的解析式为:Y=-3/4X方+3且C点的坐标为(-1,9/4),BC=15/4AM=t,BN=2t,所以BM=4-t,

如图,已知直线L1:y=2分之1x+4,交x轴,y轴分别于点B、A两点;L2⊥L1于点A,交x轴于点C

(1)因为直线L1分别与X轴、Y轴交于B、A两点,所以当Y=0时,X=-8,B坐标为(-8,0);当X=0时,Y=4,所以A(0,4)假设直线L2:Y=kx+b,又由上所知,因为L2垂直于L1于点A(

已知:如图,直线y=k1+b与双曲线y=k2分之x交于A.B,其中点A(2,n),点B(-1,-2)

题目中的直线y=k1+b,应该是直线y=k1x+b. 若是这样,则方法如下:第一个问题:∵点(-1,-2)在y=k2/x上,∴-2=-k2,∴k2=2.∴给定的双曲线的解析式是:y=2/x.∵点(2,