如图,已知直线ab经过圆o上的点a,并且ab=oa
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:44:16
21.令圆心(0,0),A(-2,0),B(2,0),L:x=4,P(2cosz,2sinz)则AP与L交点为M[4,6sinz/(1+cosz)],BP与L的交点为N[4,2sinz/(cosz-1
相切因为OA=OB,CA=CB,所以点C为等腰三角形的中点,因此OC垂直于AB,即OC垂直于AC;又因为点C在圆上,OC为圆的半径,所以AB与圆O相切
证明:连接OC∵OA=OB,CA=CB,OC=OC∴⊿AOC≌⊿BOC(SSS)∴∠ACO=∠BCO∵∠ACO+∠BCO=180º∴∠ACO=∠BCO=90º即OC⊥AB,根据垂直
简单的说一下:如图,∠A=∠P=∠ACO=∠PCB=x,AC=PC所以:△AOC≌△PBC,得到OC=BC所以:△COB是等边三角形因此∠OCB=60°,所以:∠A=∠P=∠PCB=30°,∠PCO=
(1)设直线为y=ax+b带入两点A(2,0),B(1,1)得2a+b=0a+b=1所以a=-1b=2所以直线的解析式为y=-x+2把B(1,1)代入y=ax2得a=1,所以抛物线的解析式为y=x2(
证明:AB为⊙O的切线,所以OC垂直AB又因为CA=CB,所以,OC为垂直平分线因此有OA=OB
1直线AB:y=x+2因为C(-1,1)设抛物线y=a(x+1)^2+1把(0,0)点带入抛物线公式,解得a=-1所以抛物线y=-(x+1)^2+12C水平方向移动3,竖直方向移动3.得到新的抛物线y
话说第一题.很简单.相似三角形概念.(1)点A和点F同在圆上,且都对应弦BC,所以角A=角F,CD垂直于AB,那么角DCB=角A,所以角DCB=角F,因此,三角形FCB相似于三角形CBG,所以BC/B
证明:连接OC∵OA=OB,AC=CB,OC=OC∴△AOC≌△BOC∴∠ACO=∠BCO∵∠ACO+∠BCO=180°∴∠ACO=90°∵C在⊙O上∴AB是⊙O的切线
这道题没有具体的函数关系式这道题主要的是看我们的趋势判断能力因为这里面没有数值写不出具体的关系式只能说是一个抛物线的数值关系你们现在还没有学到高中才有的哈你也可以看看http://baike.baid
(Ⅰ)建立如图所示的直角坐标系,由于⊙O的方程为x2+y2=4,…(2分)直线L的方程为x=4,∵∠PAB=30°,∴点P的坐标为(1,√3),∴lAP:y=√3/3(x+2),lBP:y=-√3(x
(1)已知∠AOC=60°,∴∠BOC=120°,又OM平分∠BOC,∠COM=12∠BOC=60°,∴∠CON=∠COM+90°=150°;(2)延长NO,∵∠BOC=120°∴∠AOC=60°,当
是.因为O,C都在AB的垂直平分线上,OC垂直AB,同时OC=半径,C必然是切点.
第一题用反证法,假设不是切线,即直线跟圆有两个交点,而OA=OB,可得出A、B关于过O点作AB的垂线对称,而该垂线自O点向AB方向与圆仅一个交点;而CA=CB,则C必在AB的中垂线上,同理,另外一点也
证明连接OC∵OA=OB,CA=CB,∴OC⊥AB,∴AB是⊙O的切线.BC2=BD*BE.证明:∵ED是直径,∴∠ECD=90°,∴∠E+∠EDC=90°.又∵∠BCD+∠OCD=90°,∠OCD=
在AB取点E,使AE=AD,易证三角形ADC与三角形AEC全等,可得:角ADC=角AEC三角形CB详细在AB上取点E,使AE=AD,连接CE因为AC平分角BAD所以角EAC=角DAC因为AE=AD,A
符合条件的点P共有三个.(1)当点P在BA延长线上P1点时:若OQ=P1Q,则∠QOP1=∠QP1O,设∠COQ=X,则∠QP1O=X+30.∠OCQ=X+60=∠OQC. 则:2(X+60