如图,已知点P是▲ABC的边AB上的一点,PE交AC于点M,PM=EM
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 12:12:45
开始移动时,x=30°,移动开始后,∠POF逐渐增大,最后当B与E重合时,∠POF取得最大值,则根据同弧所对的圆心角等于它所对圆周角的2倍得:∠POF=2∠ABC=2×30°=60°,故x的取值范围是
角A+∠ABC+∠ACB=180∠P+∠PBC+∠PCB=180又∠ABC>∠PBC∠ACB>∠PCB所以∠A<∠P
证明:1)在△PDB和△PEC中∵∠PDB=∠PEC=90°(∵PD⊥AB,PE⊥AC)PB=PC(∵P是BC中点)PD=PE(已知)∴Rt△PDB≌Rt△PEC(HL)∴∠B=∠C∴AB=AC2)∵
(1)依题意得1t=6-3t解得t=1.5(2)存在,依题意得2*1t=6-3t解得t=1.2(有一个角等于30°或60°的直角三角形斜边是直角边的两倍)
分析:(1)由三角形ABC中任意一点P(x0,y0),经平移后对应点为P′(x0+5,y0-2),可得三角形ABC的平移规律为:向右平移5个单位,向下平移2个单位,即可得出对应点的坐标.(2)利用对应
∵BA⊥AM,MN⊥AC,∴∠BAM=ANM=90°∴∠PAQ+∠MAN=∠MAN+∠AMN=90°∴∠PAQ=∠AMN∵PQ⊥AB,∴∠APQ=90°=∠ANM∴AQ=MN,∴△PQA≌△ANM∴A
①二秒后:BP=8-2=6BQ=2*2=4PQ=√6²+4²=2√13②当t≤3时BP=8-t,BQ=2t8-t=2t,解得t=8/3当t>3时AP=t,BP=8-t,CQ=2t-
(1)证:因为PQ⊥BC角BQP=90度同时因为∠A=90°,AB=AC=1所以∠B=45°等腰直角三角形所以PQ=BQ(2)因题(1)可知PQ=BQ=X/根号2QC=y又因为AC=AB=1AB垂直于
证明:如图,延长BP交AC于D.∵∠BPC>∠PDC,∠PDC>∠A,∴∠BPC>∠A.
由已知得∠A=∠ACE-∠ABC=x°,∠P=∠PCE-∠PCB=∠ACE/2-∠ABC/2=x°/2OK,给分吧
1、若点M是AC中点则AM=CM又因为PM=EM∠AMP=∠CME(对角线)所以△AMP≌△CME所以∠APM=∠E所以CE∥AB2、若CE∥AB则∠APM=∠E又因为PM=EM∠AMP=∠CME(对
连接BP并延长交AC于G由重心性质得,BP:PG=2:1因为DE//AC所以BD:DA=BP:PG=2:1所以BD:BA=2:3,AD:AB=1:3因为DE//AC,DF//BC所以△BDE∽△BAC
(1)如果M是AC的中点,那么AM=MC∴△AMP全等于△CME∴角BAC=角ACE∴CE//AB(2)CE//AB,∴角APM=角CEM又∵角AMP=角CME(对角相等)∴△AMP全等于△CME(角
(1)∵点P的运动速度为1cm/s,点Q的运动速度为2cm/s∴AP=t,BQ=2t∴BP=6-t∵t=2∴BP=6-2=4,BQ=2×2=4∴BP=BQ∴△BPQ为等腰三角形又∵在等边三角形ABC中
(1)∵△ABE和△APQ是等边三角形,∴AB=AE,AP=AQ,∠BAE=∠PAQ=∠ABE=∠AEB=60°,∴∠BAE-∠PAE=∠PAQ-∠PAE,∴∠BAP=∠EAQ.在△ABP和△AEQ中
证明:连接并延长AP,交BC与点D∵∠BPD是△ABP的一个外角【已知】∴∠BPD=∠BAP+∠ABP【外角等于不相邻的两个内角和】∵∠CPD是△ACP的一个外角【已知】∴∠CPD=∠BAP+∠ABP
设当运动t秒时,线段PQ按逆时针方向旋转60°得线段QD,此时点D恰好落在BC边上,则BP=t,CQ=2t,如图,∴QP=QD,∠PQD=60°,∴∠AQP+∠CQD=120°,又∵△ABC为等边三角
动点P、Q同时从A、C出发,分别以每秒6个单位及3个单位沿数轴相向匀速运动,设时间为t,当t=1秒时,P向右移动了6个单位,位于AO之间,距离O是4个单位,Q向左移动了3个单位,位于CB之间,距离B是
BP是角ABC的外角平分线,则P到AB,BC距离相等,CP是角ABC的外角平分线,则P到AC,BC距离相等,故P到AB,AC距离相等,P在角A的平分线上.
∵∠1=∠2+∠3,∴∠2=∠1-∠3,∠A=∠ACE-∠ABC,∵点P是∠ABC和外角∠ACE的角平分线交点,∴∠A=2∠1-2∠3=2(∠1-∠3)=2∠2,∴∠p=1/2∠A